• Title/Summary/Keyword: 강소성유한요소해석

Search Result 82, Processing Time 0.024 seconds

A Study on the Criterion for Membrane/Shell Mixed Element and Application to the Rigid-Plastic/Elastic-Plastic Finite Element Analysis (박막/쉘 혼합요소의 판별조건과 강소성/탄소성 유한요소해석 적용에 관한 연구)

  • Jung, Dong-Won;Yang, Kyoung-Boo
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.1-10
    • /
    • 1999
  • This study is concerned with the application of new criterion for membrane/shell mixed element in the rigid-plastic finite element analysis and elastic-plastic finite element analysis. The membrane/shell mixed element can be selctively adapted to the pure stretching condition by using membrane or a shell element in the bending effect areas. Thus, membrane/shell mixed element requires a efficient criterion for a distinction between membrane and shell element. In the present study introduce the criterion using the angle of between two element and confirm a generality of criterion from appling the theory to a rigid-plastic and elastic-plastic problems.

  • PDF

Analysis of the Axisymmetric Hydro-Mechanical Deep Drawing Process by Using the Finite Element Method (유한 요소법을 이용한 축대칭 하이드로 미케니칼 디프 드로잉 공정의 해석)

  • 양동열;김한경;이항수;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.873-882
    • /
    • 1992
  • The study is concerned with the rigid-plastic element analysis for axisymmetric hydromechanical deep drawing in which the fluid flow influences the metal deformation. Due to the fluid pressure acting on the sheet material hydromechanical deep drawing is distinguished from the conventional deep drawing processes. In considering the pressure effect, the governing equation for fluid pressure is solved and the result is reflected on the global stiffness matrix. The solution procedure consists of two stages ; i.e., initial bulging of the sheet surface before the initiation of steady fluid flow in the flange and fluid-lubricated stage. The problem is decoupled between fluid analysis and analysis of solid deformation by deformation by iterative feedback of mutual computed results. The corresponding experiments are carried out for axisymmetric hydro-mechanical deep drawing of annealled aluminium sheet as well as for deep drawing. It has been shown from the experiments that the limit drawing ratio for hydro-mechanical deep drawing is improved as compared with deep drawing. The computed results are in good agreement with the experiment for variation of punch head and chamber pressure with respect to the punch travel and for distribution of thicknees strain. It is thus shown that the present method of analysis can be effectively applied to the analysis of axisymmetric hydro-mechanical deep drawing processes.

Improvement of Element Stability using Adaptive Directional Reduced Integration and its Application to Rigid-Plastic Finite Element Method (적응성 선향저감적분법에 의한 요소의 안정성 향상과 강소성 유한요소해석에의 적용)

  • Park, K.;Lee, Y.K.;Yang, D.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.32-41
    • /
    • 1995
  • In the analysis of metal forming processes by the finite element method, there are many numerical instabilities such as element locking, hourglass mode and shear locking. These instabilities may have a bad effect upon accuracy and convergence. The present work is concerned with improvement of stability and efficiency in two-dimensional rigid-plastic finite element method using various type of elemenmts and numerical intergration schemes. As metal forming examples, upsetting and backward extrusion are taken for comparison among the methods: various element types and numerical integration schemes. Comparison is made in terms of stability and efficiency in element behavior and computational efficiency and a new scheme of adaptive directional reduced integration is introduced. As a result, the finite element computation has been stabilized from the viewpoint of computational time, convergency, and numerical instability.

  • PDF

Finite Element Analysis of TEE Forming for HDPE Pipe (HDPE 관의 TEE 성형에 대한 유한요소해석)

  • Wang Chang-Bum;Song Doo-Ho;Park Yong-Bok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.298-307
    • /
    • 2006
  • TEE Forming process for HDPE(High Density PolyEthylen) pipe has been analyzed by using rigid plastic finite element code, DEFORM-3D. TEE of HDPE pipes is necessary to connect main pipe with branch pipe and change the flow direction of hot water. A HDPE pipe is used as a insulator to maintain the temperature of hot water A butt welding process through TEE forming for a HDPE pipe is a updated process improving the strength of welding part compared to conventional extrusion welding process. The Experiment of Hot and Cold Forming have been performed. The design parameters such as a initial hole shape have been obtained through rigid-plastic finite element analysis, which is applied to the actual manufacturing process.

  • PDF

Rigid-Plastic Finite Element Analysis of Axisymmetric Forward Extrusion (강소성 유한요소법 을 이용한 축대칭 전방 압출 해석)

  • 양동열;오병수;이중홍
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.452-462
    • /
    • 1985
  • The axisymmetric forward extrusion is analyzed by using the rigid-plastic finite element formulation. The distribution of stresses and strains as well as the deformation pattern in solid extrusion is very important for the improvement of product quality. The initial velocity field is determined by assuming the material as a Newtonian fluid through an arbitrarily shaped axisymmetric die. The workhardening effect and the friction of the die-material interface are considered in the formulation. Some reduction of area and die shapes(conical and biquadratic-curved) are chosen for computation. Experiments are carried out for steel alloy(SCM4) specimens using conical and curved dies. It is found that experimental observation is in good agreement with FEM results. The strain distribution is curved(biquadratic) dies is shown to be more uniform than in conical dies at the same reduction of area.

Domain Decomposition using Substructuring Method and Parallel Computation of the Rigid-Plastic Finite Element Analysis (부구조법에 의한 영역 분할 및 강소성 유한요소해석의 병렬 계산)

  • Park, Keun;Yang, Dong-Yol
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.474-480
    • /
    • 1998
  • In the present study a domain decomposition scheme using the substructuring method is developed for the computational efficiency of the finite element analysis of metal forming processes. in order to avoid calculation of an inverse matrix during the substructuring procedure, the modified Cholesky decomposition method is implemented. As obtaining the data independence by the substructuring method the program is easily paralleized using the Parallel Virtual machine(PVM) library on a work-station cluster connected on networks. A numerical example for a simple upsetting is calculated and the speed-up ratio with respect to various number of subdomains and number of processors. The efficiency of the parallel computation is discussed by comparing the results.

  • PDF

Finite Element Analysis for Design of Closed Die Forging Process of a Bevel Gear (베벨기어의 밀폐단조 공정설계를 위한 유한요소해석)

  • Kim, Yohng-Jo;Park, Sung-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.92-99
    • /
    • 2003
  • Bevel gears are important mechanical parts to transmit power in transportation system high precision parts like bevel gears might be manufactured by closed die forging process for dimensional accuracy. Closed die forging of bevel gears offers the high quality and good mechanical properties and also leads to considerable cost saving. To determinate the proper closed-die forging process for bevel gear forms, three-dimensional finite element simulation for the progressive forging process was earned out and also the simulation results were compared with experimental results.

  • PDF

Domain Decomposition using Substructuring Method and Parallel Comptation of the Rigid-Plastic Finite Element Analysis (부구조법에 의한 영역 분할 및 강소성 유한요소해석의 병렬 계산)

  • Park, Keun;Yang, Dong-Yol
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.246-249
    • /
    • 1998
  • In the present study, domain decomposition using the substructuring method is developed for the computational efficiency of the finite element analysis of metal forming processes. In order to avoid calculation of an inverse matrix during the substructuring procedure, the modified Cholesky decomposition method is implemented. As obtaining the data independence by the substructuring method, the program is easily parallelized using the Parallel Virtual Machine(PVM) library on a workstation cluster connected on networks. A numerical example for a simple upsetting is calculated and the speed-up ratio with respect to various domain decompositions and number of processors. Comparing the results, it is concluded that the improvement of performance is obtained through the proposed method.

  • PDF

Three-Dimensional Rigid-Plastic finite Element Analysis of Roll Forming Sequence of Stringer for Aircraft (항공기용 스트링거 롤 포밍공정의 3차원 강소성 유한요소해석)

  • Cho, J.H.;Kim, H.T.;Lee, M.C.;An, G.C.;Kim, H.W.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.201-206
    • /
    • 2007
  • In this paper, we apply a three-dimensional rigid-plastic finite element method to simulate an unsteady-state roll forming process. A typical roll forming process is investigated from the standpoint of computer simulation and its realistic analysis model is proposed. The material is considered as bulk material and discretized into hexahedral finite elements. The presented approach is applied to simulating the roll forming process of straight stringer used for aircraft structure.

  • PDF

Hybrid Method for Updating Geometry 3n Non-steady State Metal Forming Analysis by Rigid Plastic FEM (강소성 유한요소해석에 의한 비정상상태 금속성형 해석에서 형상 갱신을 위한 혼합법)

  • 최영;여홍태;허관도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.155-162
    • /
    • 2004
  • The volume of the metal is not changed for the plastic deformation. For metal forming simulation, rigid-plastic FEM codes are widely used. Updating geometry using Euler method in the simulation, the volume loss is occurred. In this paper, hybrid method is introduced to perform a more accurate simulation reducing computation time. In the proposed hybrid method, RK2 method is used for geometry updating at first time step and after the boundary condition of the node is changed. At the others, Adams-Bashforth or theta method is applied to update geometry. The results show that the simulations of upsetting and side-pressing can be performed within 0.02%.