• Title/Summary/Keyword: 강성 증가현상

Search Result 128, Processing Time 0.025 seconds

1g Shaking Table Test on Soil and Stone-column Interaction Behavior under Seismic Loading (1g 진동대 실험을 이용한 지반-스톤칼럼의 상호작용 거동에 관한 연구)

  • Kim, Jin-Man;Ryu, Jeong-Ho;Kim, Mi-Na;Son, Su-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.115-124
    • /
    • 2012
  • The responses of stone column-improved ground under seismic loading are investigated using a series of 1g shaking table tests. These tests show similar results to those of one dimensional numerical models for stone column-improved ground based on Baez's assumption on the soil and stone-column interaction. The experimental and numerical results show that the stone column can prevent large shear deformations incurred due to cyclic softening in clayey deposits, but they also show that the surface acceleration in the improved clayey deposits may amplify more than that in unimproved clayey deposits when subjected to short periodic seismic motions.

Global Environmental Changes and the Antarctic (지구환경변화와 남극)

  • Lee, Bang-Yong;Chung, Ho-Sung;Kang, Sung-Ho;Chang, Soon-Keun
    • Journal of the Korean earth science society
    • /
    • v.24 no.3
    • /
    • pp.216-233
    • /
    • 2003
  • This study delineates the phenomena related with global environmental changes such as global warming, ozone depletion, and El Ni${\tilde{n}}$o/Southern Oscillation (ENSO) noted in the Antarctic. Retreat of ice cliffs, glaciers, and calving of ice shelves indicate the effects of recently aggravated global warming. The ice cliff located at Marian Cove, King George Island, South Shetland Islands off the Antarctic Peninsula has been observed to be retreating faster in the last 7 years than in the previous 38 years since 1956. There are some indications of temperature and precipitation changes associated with ENSO around King Sejong Station. The regression analyses indicate significant trends such as a decrease in the total amount of ozone and an increase in ultraviolet radiation which was seen by a satellite (TOMS-EUV) in September and October which correspond to ozone-hole season over King Sejong Station. Increase of UV radiation due to the ozone depletion in the Antarctic has changed the growth rate of marine organisms. It may also result in changes to the productivity, biomass, and species composition of marine organisms which can affect the whole marine ecosystem. The recent ice-core drilling over Lake Vostok has been reviewed with emphasis on the four cycles of glacial stages over the past 420,000 years. It is time to show more interest in mainland Antarctica through investigations of the coring and vast ice sheet, terrestrial geology, and upper atmospheric sciences in order to understand the past environmental changes and to predict possible changes to the environment in the future.

Evaluation of the Effective Width and Flexural Strength of the T-Stalled Walls (T형 벽체의 유효 폭 및 휨강도 평가)

  • 양지수;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.796-803
    • /
    • 2002
  • T-shaped walls have different strength, stiffness and ductility in the two opposite directions parallel to the web when subjected to horizontal in-plane loads. When the flange is in tension, the extent that the flange reinforcement contributes to the flexural strength will be subjected to shear-lag effect. Because of this shear-lag effect, the flange may not participate fully in the action with the web, and the effective flange width is needed for predicting the actual strength and stiffness of structures. The objective of this paper is to evaluate the effective flange width and actual strength of the T-shaped wall with Korean code specified detailing of the wall web. Three specimens were tested with cyclic lateral loading applied at top of the wall. A constant axial load of approximately 0.1f$\_$ck/$.$A$\_$g/ is maintained during the testing. Test results show that the effective flange width increases with increasing drift level, such that the entire overhanging flange of h/3 is effective at the maximum strength level. Therefore, the use of PCI or KBC(Korean Building Code) value of h/10 is unconservative with respect to detailing at the wall web boundary.

Relation between Arc Phenomena and Spattering Ratio of Flux Cored Arc Welding with 100% $CO_2$ Shielding gas (플럭스 코어드 아크 용접의 아크현상과 스패터 발생량과의 관계)

  • S.W. Kang;D.S. Um;E.S. Oh;D.S. You
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.65-75
    • /
    • 1998
  • The $CO_2$ welding with 100% $CO_2$ gas is commonly used because of its cost and efficiency. Arc phenomena and spattering ratio of the $CO_2$ welding are influenced by various factors such as chemical compositions of welding wire, shielding gas, welding condition and welding power source etc.. Spattering ratio is predominantly influenced by the welding condition which determines a droplet transfer rode. In this study, arc phenomena and spattering ratio are investigated by using two type of FCW(titania type, semi-metal type). Then, the welding quality and optimum welding condition can be selected. From this study, the following results ware obtained; 1) In low current range(140A), FCW up to welding voltage(22V) resulted in a typical short circuit transfer, increase of spattering ratio and growth of spatter diameter. 2) In high current range(320A), the arc stability in titania FCW of a typical globular transfer is better than that of semi-metal FCW.

  • PDF

Exposure to Dithiopyr Alters Swimming Performance Parameters in Zebrafish (Dithiopyr에 노출이 zebrafish의 유영 행동에 미치는 영향)

  • Oh, Junyoung;Park, Eun-Jin;Kang, Seongeun;Lee, Seungheon
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.181-189
    • /
    • 2016
  • The aim of this study was to identify the effects of dithiopyr (DTP), a herbicide, on behavior in zebrafish. The toxicity of DTP has rarely been investigated in fish. In the present study, zebrafish were exposed to different concentrations of DTP in the range of 10-20 μM for 48 h in a test container, in order to measure the value of median lethal concentrations (LC50). Behavioral experiments were performed, including the novel tank test (NTT) and the open field test (OFT), to assess stress responses or locomotion. After exposure to the DTP solution at a sublethal concentration of 2.5–10 μM for 6 min, the behavior of the zebrafish was observed for 6 min. In the acute toxicity test, the LC50 value of DTP showed as 14.49 μM in the zebrafish. The NTT showed that the duration of immobility and the velocity were significantly increased by exposure at a concentration of 5 μM of DTP, compared with a control group (p<0.05). However, compared with the control group, DTP significantly decreased the distance moved and the frequency at the top of the tank, and significantly increased the turn angle and duration at the bottom, in a concentration-dependent manner (p<0.05). In addition, in the OFT, exposure to DTP significantly decreased the distance moved and velocity compared with the control group (p<0.05). Exposure to DTP also significantly increased the duration of immobility, the turn angle, and the meandering movement, in a concentration-dependent manner (p<0.05). Further, exposure to DTP at a low concentration elevated whole-body cortisol levels in the zebrafish. The results of this study thus suggest that DTP induces a toxic response and negative effects on behavior and the endocrine system in zebrafish.

Effects of Geosynthetic Reinforcement on Compaction of High Water Content Clay (토목섬유 보강이 고함수비 점성토의 다짐에 미치는 영향)

  • Roh Han Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.67-84
    • /
    • 2005
  • This research was conducted to evaluate the effectiveness of reinforcement for nearly saturated soft clay compaction. The effectiveness was investigated by roller compaction test using nearly saturated clay specimens. The nearly saturated condition was obtained by submerging clay in the water for 12 hours. High water content specimens were compacted in plane strain condition by a steel roller. A specimen was compacted by four 5 cm horizontal layers. Specimens were prepared fur both reinforced and unreinforced cases to evaluate the effectiveness of reinforcement. Used reinforcement is a composite consisted of both woven and non-woven geotextile. The composite usually provides drainage and tensile reinforcement to hi인 water-contented clay so that it increases bearing capacity. Therefore, large compaction load can be applied to reinforced clay and it achieves higher density effectively. The reinforcement also increases compaction efficiency because it reduces the ratio between shear and vertical forces during compaction process. The maximum vertical stress on the base of specimen usually decreased with higher compaction thickness. The reinforcement increases soil stiffness under the compaction roller and it initiates stress concentration. As a result, it maintains higher vertical stress level on the base of specimen that provides better compaction characteristics. Based on test results, it can be concluded that the reinforcement is essential to achieve effective compaction on soft clay.

Effects of Surface Color and Morphology on the Mar Behaviors of Urethane-Acrylate Coatings (우레탄 아크릴 코팅 소재의 표면 색상 및 모폴로지가 긁힘 거동에 미치는 영향)

  • Jung, Won-Young;Weon, Jong-Il
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • The effects of surface color and morphology on the mar behaviors of urethane-acrylate coated surfaces were examined. The superiority of mar resistance was observed in the order of white, red and black-colored samples. This can be explained by a contrast effect. In other words, in case of black colored sample, it takes place the defuse reflection of the incident light on the damaged region where mar damage exerts, leading to whitening phenomenon. Therefore, the damaged region is easily recognized by contrasting the black background. On the other hand, it is difficult for the white-colored sample to perceive the mar-damaged area by the white background acting as protecting coloration. As the gloss of urethane-acrylate coated surface increases, it is observed that there is an increase in the number of carbonyl (-C=O) function group, amount of ethylene and silica. The enhancements of surface rigidity by adding the silica particles and formation of carbonyl function groups by the surface oxidation lead to the increase in mar resistance, while the increase of polyethylene wax is responsible for the improved gloss and smooth-faced surface. Based on the above findings, technical approaches leading the improvement of mar resistance of the urethane-acrylate coated surface are discussed.

Evaluation of the Shear Strength and Stiffness of Frozen Soil with a Low Water Content (함수비가 낮은 동결토의 전단강도 및 강성 평가)

  • Kim, Sang Yeob;Lee, Jong-Sub;Kim, Young Seok;Byun, Yong-Hoon
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2015
  • The characteristics of frozen soils are one of most important factors for foundation design in cold region. The objective of this study is to evaluate the shear strength and stiffness of frozen soils according to the confining conditions during the freezing and shearing phase. A direct shear box is constructed for the frozen specimens and bender elements are mounted on the wall of the shear box to measure shear wave velocities. Specimens are prepared by mixing sand and silt with a silt fraction of 30% in weight and the degree of saturation of 10%, giving a relative density of 60% for all tests. The temperature of the specimens in the freezer is allowed to fall below -5℃, and then direct shear tests are performed. A series of vertical stresses are applied during the freezing and shearing phase. Shear stress, vertical displacement, and shear wave along the horizontal displacement are measured. Experimental results show that in all the tests, shear strength increases with increasing vertical stress applied during the freezing and shearing phases. The magnitude of the increase in shear strength with increasing vertical stress during shearing under fixed vertical stress in the frozen state is smaller than the magnitude of the increase in vertical stress during freezing and shearing. In addition, the change in shear wave velocities varies with the position of the bender elements. In the case of shear waves passing through the shear plane, the shear wave velocities decrease with increasing horizontal displacement. This study provides an evaluation of the properties of shear strength and stiffness of frozen soils under varied confining condition.

Experimental Study of Coupled Shearwalls with different Coupling Member (인방보의 형태에 따른 개구부가 있는 전단벽의 거동 특성에 대한 실험적 연구)

  • Bae, Baek-Il;Choi, Hyun-Ki;Choi, Yoon-Chel;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.37-40
    • /
    • 2008
  • Many engineers find the way of improving the old building's structural behavior in the remodeling project which is performed using artificial openings for merging two houses. This test was performed to verify the characteristics of coupling beams according to the shape of the openings. One of test specimen has rectangle shape and the other was made by the circle shaped opening and one has coupling member only as slabs. Additionally, three specimens which have openings have 23% ratio in opening area to total wall area. Consequently, solid type which have no opening area shows shear failure. In the case of CW-RBS which have rectangular shaped opening, cracks are developed in coupling beam significantly. And CW-CS which has circular opening failed in shear showing development of diagonal cracks at wall toes and wall mid-height. It is thought that degradation of the wall strength is under the control of the opening shape and coupling beam-wall connection area.

  • PDF

Comparison on the Behavior according to Shapes of Tension Web member in gap K-joints in Cold-formed Square Hollow Sections (인장웨브재 형태에 따른 각형강관 갭K형 접합부의 거동 비교)

  • Jeong, Sang Min;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.561-568
    • /
    • 2005
  • The object of this paper is to determine appropriateness for use of high-strength tensile bar as a tension web member. The gap K-joint of tensile bar types were compared with gap K-joint of square hollow section (SHS) types. For the same width-to-thickness ratio ($2{\gamma}=33.3$ ), tests were performed on four specimens of the SHS type and eight specimens of the tensile bar type. The comparison of capacity with the experimental results showed a capacity of the SHS type joint to be higher than that of the tensile bartype joint for the same brace-to-chord width ratio. Moreover, the capacity of the SHS type joints increased proportionally to the width ratio ${\beta}$), while tensile bar type joints increased as the tension width ratio (${\beta}2$). In failure mode, SHS-type specimens showed local buckling of the compression brace and plastic failure was observed between the tension brace and chord face, and with the tensile bar type specimens there appeared punching shear failure of the chord face at the toe of the connection plate. It is, therefore, concluded that width-to-thickness ratio should be lower than that of the hollow-section type and the relation between tension and compression width ratio should be considered.