• Title/Summary/Keyword: 강섬유 부착성능

Search Result 35, Processing Time 0.033 seconds

Slant Shear Test for Determining the Interfacial Shear Strength of Concrete Strengthened with Ultra-High Performance Fiber Reinforced Concrete (초고성능 섬유보강 콘크리트로 보강된 콘크리트의 계면 전단강도 결정을 위한 경사전단 실험)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.637-646
    • /
    • 2016
  • In this study, slant shear tests for the prism specimens strengthened with ultra-high performance fiber reinforced concrete (UHPFRC), normal- and high-strength concrete were performed to evaluate the interfacial shear strength between old and new concrete substrate. Test parameters are the roughness of surface, concrete strength, and fiber volume fraction of UHPFRC. The surface of the concrete was roughened by shot blasting. Test results showed that the adhesion bond resistance of the specimen with a roughened surface was very large compared to that of the specimen with a smooth surface. In addition, the interfacial shear strength appeared to be affected by the concrete strength rather than the fiber volume fraction. For the roughened surface by shot-blasting method, interfacial shear resistance exceeded the upper limit which is presented in current design codes even if the shear-friction reinforcements are not provided. Based on the test results, it is applicable to use the current concrete design codes to achieve the shear-friction design for the interface between conventional concrete and UHPFRC. However, for the surface which is not processed, it would be appropriate to provide additional shear-friction reinforcement.

Improvement of the Strength Properties and Impact Resistance of the Cement Composite Materials by the use of Surface Modification of the Aramid Fibers (아라미드섬유의 표면개질에 의한 시멘트 복합재료의 강도특성 및 내충격성능의 향상효과)

  • Nam, Jeong-Soo;Yoo, Jae-Chul;Kim, Gyu-Yong;Kim, Hong-Seop;Jeon, Joong-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.100-108
    • /
    • 2015
  • The purpose of this study is to evaluate the effect of improvement on the impact resistance and strength properties of cement composites by surface modification of aramid fiber. For aramid fiber reinforced cement composites, therefore, dispersion capability and the bonding efficiency between the fibers and the cement composite material need to be improved. It is possible by modifying surface properties to hydrophobic, it is considered that oiling agent ratio of 1.2 % and improvement of performance is in need to be investigated. In this study, short aramid fibers were mixed by different fiber length and oiling agent ratio. And improvement of strength properties and impact resistance performance of hybrid cement composites were evaluated under the influence of steel fiber. As a result, strength properties of aramid fiber reinforced cement composites are different by mixing ratio of fiber, oiling agent ratio and length of fiber. In case of cement composites which have same volume fraction and fiber length, tensile strength and flexural strength were improved with increase of the emulsions throughput of the fiber surface. The results of evaluation on the static strength properties had effects on impact resistance performance by high-velocity impact. And it was observed that the scabbing of rear was suppressed with increase of the oiling agent ratio.

High-Velocity Impact Experiment on Impact Resistance of Steel Fiber-Reinforced Concrete Panels with Wire Mesh (와이어매쉬와 강섬유로 보강된 콘크리트 패널의 내충격성 규명을 위한 고속충격실험)

  • Kim, Sang-Hee;Hong, Sung-Gul;Yun, Hyun-Do;Kim, Gyu-Yong;Kang, Thomas H.K.
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.103-113
    • /
    • 2015
  • This paper studies impact performance of wire-mesh and steel fiber-reinforced concrete based on high-velocity impact experiments using hard spherical balls. In this experimental study, panel specimens were tested with various parameters such as steel fiber volume fraction, presence/absence of wire mesh, panel thickness, impact velocity, and aggregate size for the comparison of impact resistance performance for each specimen. While improvement of the impact resistance for reducing the penetration depth is barely affected with steel fiber volume fraction, the impact resistance to scabbing and perforation is improved substantially. This was due to the fact that the steel fiber had bridging effects in concrete matrix. The wire mesh helped minimizing the crater diameter of front and back face and enhanced the impact resistance to scabbing and perforation; however, the wire mesh did not affect the penetration depth. The wire mesh also reduced the bending deformation of the specimen with wire mesh, though some specimens had splitting bond failure on the rear face. Additionally, use of 20 mm aggregates is superior to 8 mm aggregates in terms of penetration depth, but for reducing the crater diameter on front and back faces, the use of 8 mm aggregates would be more efficient.

Tensile Behavior of Hybrid Fiber Reinforced Cement Composite According to the Hooked Steel Fiber and Polyvinyl Alcohol Fiber Blending Ratio and Strain Rate (후크형 강섬유와 폴리비닐알코올 섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장거동)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.98-105
    • /
    • 2017
  • In this study, the fiber blending ratio and strain rate effect on the tensile behavior of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber and polyvinyl alcohol fiber were used for reinforcing fiber. The fiber blending ratio of HSF+PVA were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, the tensile strength, strain capacity and fracture toughness of the hooked steel fiber reinforced cement composites were improved by the increase of the bond strength of the fiber and the matrix according to increase of strain rate. However, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by micro cracks in the matrix around hooked steel fiber. On the other hand, PVA fiber showed cut-off fracture at strain rate $10^{-6}/s$ with multiple cracks. However, at the strain rate $10^1/s$, the multiple cracks and strain capacity were decreased because of the pull-out fracture of PVA fiber. The HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. In addition, the synergistic response of fracture toughness was positive because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance of hooked steel fiber at strain rate $10^1/s$.

Flexural Performance and Crack Damage Mitigation of Plain Concrete Beams Layered with Reinforced SHCC Materials with Polyethylene Fibers (폴리에틸렌 단일섬유를 혼입한 SHCC로 휨 보강된 콘크리트 보의 균열손상 제어 및 휨 성능)

  • Kim, June-Su;Lee, Young-Oh;Shim, Young-Yong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.361-368
    • /
    • 2012
  • Required performance for repair materials are strength, ductility, durability and bonding with the substrate concrete. Various kinds of fiber-reinforced cement composites (FRCCs) have been developed and used as repair materials. Strain-hardening cement based composites (SHCC) is one of the effective repair materials that can be used to improve crack-damage tolerance of reinforced concrete (RC) structures. SHCC is a superior FRCC that has multiple cracking characteristic and pseudo strain-hardening behavior. The expansive admixture, which can be used to reduce shrinkage in SHCC materials with less workability by controlling interfacial bonding performance between SHCC and substrate concrete. For the application of SHCC as a repair material to RC structures, this study investigates the flexural performance of expansive SHCC-layered concrete beam. Test variables include the replacement levels of expansive admixture (0 and 10%), repair thickness (30 and 40 mm), and compressive strength of SHCC (30, 70 and 100 MPa). Four point bending tests on concrete beams strengthened with SHCCs were carried out to evaluate the contribution of SHCC on the flexural capacity. The result suggested that expansive SHCC materials can be used for repairing and strengthening of concrete infrastructures.

Shear Behavior of Slender HSC Beams Reinforced with Stirrups using Headed Bars, High Strength Steels, and CFRP Bars (헤디드 바, 고장력 철근 및 CFRP 바로 전단보강된 세장 고강도콘크리트 보의 전단 거동 평가)

  • Yang, Jun-Mo;Kwon, Ki-Yeon;Choi, Hong-Shik;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.717-726
    • /
    • 2007
  • If conventional reinforcements are used for high-strength concrete (HSC) structures, a large amount of the reinforcement must be required to compensate for the brittleness of HSC and make the best use of HSC. This raises some structural problems such as steel congestion and an increase in self-weight. Therefore, alternative reinforcing materials and methods for HSC structures are needed. In this study, four full-scale beam specimens constructed with HSC (100 MPa) were tested to investigate the effect of the different shear reinforcements on the shear behavior. These four specimens were reinforced for shear stirrups with normal and high strength steels, headed bars, and carbon fiber-reinforced polymer (CFRP) bars, respectively. In addition, steel fibers were added to the HSC in the two of the specimens to observe their beneficial effects. The use of high strength steels resulted in the improvement of the shear capacity since the shear resistance provided by the shear reinforcements and the bond strength were increased. The specimen reinforced with headed bars also showed a superior performance to the conventional steel reinforced specimen due to the considerably high anchorage strength of headed bar. CFRP bars used in this research, however, seemed to be inadequate for shear reinforcement because of the inferior bond capacity. The presence of the steel fibers in concrete led to remarkable improvement in the ductility of the specimens as well as in the overall cracks control capability.

Effects of Fiber Blending Condition and Expansive Admixture Replacement on Tensile Performance of Rebar Lap Splice in Strain-Hardening Cement-Based Composites (SHCCs) (섬유혼입조건 및 팽창재 대체에 따른 변형 경화형 시멘트 복합체 내의 철근 겹침이음 성능)

  • Ryu, Seung-Hyun;Lee, Young-Oh;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.111-120
    • /
    • 2012
  • This paper is a report about lap splice performance of rebar embedded in the strain-hardening cement-based composites (SHCCs) under monotonic and repeated tension loading. Ten mix proportions of cement-based composites such as SHCCs and normal concrete were investigated. The study parameters are comprised of (1) types of reinforcing fibers (polyethylene and steel fiber), (2) replacement levels of expansive admixture (EXA, 0% and 10%), and (3) compressive strength (30 and 100 MPa) of cement-based composites. Lap splice lengths (ld) of rebars in SHCC materials and normal concrete were 60% and 100% of splice length calculated by code requirements for structural concrete, respectively. Test results indicated that SHCCs materials can lead to enhancements in the lap splice performance of embedded rebar. All of the fiber reinforcement conditions (PE-SHCC and PESF-SHCC) considered in this study produced considerable improvements in the tensile strength, cracking behavior, and bond strength of lap-spliced rebar. Furthermore, adding EXA to SHCC matrix improved the tensile lap splice performance of rebar in SHCC materials. However, for controlling crack behavior, the performance of PE-SHCC was better than that of PESF-SHCC due to its mechanical properties. This study demonstrated an effective approach for reducing required development length of lap spliced rebar by using SHCC materials.

Assessment of the Damage in High Performance Fiber-Reinforced Cement Composite under Compressive Loading Using Acoustic Emission (AE기법에 의한 압축력을 받는 고인성 섬유보강 시멘트 복합체의 손상 평가)

  • Kim, Sun-Woo;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.589-597
    • /
    • 2009
  • High Performance Fiber-reinforced Cement Composite (HPFRCC) shows the multiple crack and damage tolerance capacity due to the interfacial bonding of the fibers to the cement matrix. For practical application, it is needed to investigate the fractural behavior of HPFRCC and understand the micro-mechanism of cement matrix with reinforcing fiber. This study is devoted to the investigation of the AE signals in HPFRCC under monotonic and cyclic uniaxial compressive loading, and total four series were tested. The major experimental parameters include the type and volume fraction of fiber (PE, PVA, SC), the hybrid type and loading pattern. The test results showed that the damage progress by compressive behavior of the HPFRCC is a characteristic for the hybrid fiber type and volume fraction. It is found from acoustic emission (AE) parameter value, that the second and third compressive load cycles resulted in successive decrease of the amplitude as compared with the first compressive load cycle. Also, the AE Kaiser effect existed in HPFRCC specimens up to 80% of its ultimate strength. These observations suggested that the AE Kaiser effect has good potential to be used as a new tool to monitor the loading history of HPFRCC.

Flexural Strength Analysis of RC T-Beams Strengthened Using Fiber Sheets (섬유시트로 보강된 T형 철근콘크리트보의 휨 강도 해석)

  • Park, Tae-Hyo;Lee, Gyu-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.234-245
    • /
    • 2003
  • Most of the concrete bridge structures are exposed to damage due to the excessive traffic loading and the aging of the structure. The damage of concrete causes the further deterioration of the function in the concrete structure due to corrosion of the reinforced bars and decohesion between the concrete and the reinforced bar. The quick rehabilitation of the damaged concrete structures has become of great importance in the concrete structural system in order to avoid the further deterioration of the structures. Recently fiber sheets are used for strengthening the damaged concrete structures due to its many advantages such as its durability, non-corrosive nature, low weight, ease of application, cost saving, control of crack propagation, strength to thickness ratio, high tensile strength, serviceability and aesthetic. However, the lack of analytical procedures for assessing the nominal moment capacity by the fiber sheet reinforcement leads to difficulties in the effective process of decisions of the factors in the strengthening procedure. In this work, flexural strengthening effects by fiber sheets bonded on bottom face of the member are studied for the reinforced concrete T beam. In addition, auxiliary flexural strengthening effects by U-type fiber sheets bonded on bottom and side faces of the member to prevent delamination of the bottom fiber sheet are theoretically investigated. The analytical solutions are compared with experimental results of several references to verify the proposed approach. It is shown that the good agreements between the predicted results and experimental data are obtained.

Development of an ECC(Engineered Cementitious Composite) Designed with Ground Granulated Blast Furnace Slag (고로슬래그미분말이 혼입된 ECC(Engineered Cementitious Composite)의 개발)

  • Kim, Yun-Yong;Kim, Jeong-Su;Ha, Gee-Joo;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.21-28
    • /
    • 2006
  • This paper presents both experimental and analytical studies for the development of an ECC(Engineered Cementitious Composites) using ground granulated blast furnace slag(slag). This material has been focused on achieving moderately high composite strength while maintaining high ductility, represented by strain-hardening behavior in uniaxial tension. In the material development, micromechanics was adopted to properly select optimized range of the composition based on steady-state cracking theory and experimental studies on matrix, and interfacial properties. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties of the fiber in a matrix and the fracture toughness of mortar matrix. The addition of the slag resulted in slight increases in the frictional bond strength and the fracture toughness. Subsequent direct tensile tests demonstrate that the fiber reinforced mortar exhibited high ductile uniaxial tension behavior with a maximum strain capacity of 3.6%. Both ductility and tensile strength(~5.3 MPa) of the composite produced with slag were measured to be significantly higher than those of the composite without slag. The slag particles contribute to improving matrix strength and fiber dispersion, which is incorporated with enhanced workability attributed to the oxidized grain surface. This result suggests that, within the limited slag dosage employed in the present study, the contribution of slag particles to the workability overwhelms the side-effect of decreased potential of saturated multiple cracking.