• Title/Summary/Keyword: 강도평가

Search Result 7,228, Processing Time 0.032 seconds

Applicability of Impact-Echo Method for Assessment of Residual Strength of Fire-Damaged Concrete (화해된 콘크리트의 잔존 강도 평가에 있어서 충격-반향 기법의 적용성)

  • Shin, Sung-Woo;Kim, Seung-Yong;Kim, Jeong-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.105-112
    • /
    • 2013
  • In this study, the applicability of impact-echo method for assessment of residual strength of fire-damaged concrete is investigated. A series of standard fire test is performed to obtain fire-damaged concrete specimens. Impact-echo tests are executed on the specimens and the responses are analyzed. Compressive strengths of the fire-damaged concrete are evaluated and correlated with the ultrasonic wave velocities determined from the impact-echo responses. The effectiveness of impact-echo based ultrasonic wave velocity measurement for assessment of residual strength of fire-damaged concrete is discussed.

Anchorage Strength of Headed Bars in Steel Fiber-Reinforced UHPC of 120 and 180 MPa (120, 180 MPa 강섬유 보강 초고성능 콘크리트에 정착된 확대머리철근의 정착강도)

  • Sim, Hye-Jung;Chun, Sung-Chul;Choi, Sokhwan
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.365-373
    • /
    • 2016
  • Ultra-High-Performance Steel Fiber-Reinforced Concrete (SUPER Concrete) exhibits improved compressive and tensile strengths far superior to those of conventional concrete. These characteristics can significantly reduce the cross sectional area of the member and the anchorage strength of a headed bar is expected to be improved. In this study, the anchorage strengths of headed bars with $4d_b$ or $6d_b$ embedment length were evaluated by simulated exterior beam-column joint tests where the headed bars were used as beam bars and the joints were cast of 120 or 180 MPa SUPER Concrete. In all specimens, the actual yield strengths of the headed bars over 600 MPa were developed. Some headed bars were fractured due to the high anchorage capacity in SUPER Concrete. Therefore, the headed bar with only $4d_b$ embedment length in 120 MPa SUPER Concrete can develop a yield strength of 600 MPa which is the highest design yield strength permitted by the KCI design code. The previous model derived from tests with normal concrete and the current design code underestimate the anchorage capacity of the headed bar anchored in SUPER Concrete. Because the previous model and the current design code do not consider the effects of the high tensile strength of SUPER Concrete. From a regression analysis assuming that the anchorage strength is proportional to $(f_{ck})^{\alpha}$, the model for predicting anchorage strength of headed bars in SUPER Concrete is developed. The average and coefficient of variation of the test-to-prediction values are 1.01 and 5%, respectively.

Bond Strength of Steel Fiber Incorporated in Ultra High Performance Fiber-Reinforced Concrete (초고성능 섬유보강 콘크리트에 혼입된 강섬유의 부착강도 평가)

  • Kang, Su-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.547-554
    • /
    • 2013
  • This study was intended to estimate the bond strength of steel fiber in UHPFRC through pullout test. The pullout test was carried out with the double-sided pullout specimens with multiple fibers. First, the effect of fiber density on the bond strength was investigated, and the experimental result presented that the density range considered in this study was proved not to produce fiber-to-fiber interaction. The bond strength was estimated from several methods, which are based on the pullout load or energy at peak load, and the total energy absorbed until fibers are pulled out completely. the estimated bond strength obtained from the total energy was shown to be under the influence of the embedded length of fiber. the bond strengths obtained from peak load condition was 6.64 MPa in average, which had little difference compared to 6.46 MPa calculated by peak load only. Considering simplicity of test and analysis, it may be no matter to estimate the bond strength from peak load in pullout test.

Estimation of Flexural and Shear Strength for Steel Fiber Reinforced Flexural Members without Shear Reinforcements (전단보강이 없는 강섬유보강 콘크리트 휨부재의 휨 및 전단강도의 평가)

  • Oh, Young-Hun;Kim, Jeong-Hae
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.257-267
    • /
    • 2008
  • Results of seventy-seven specimens tested by this study and previous research were collected and evaluated to propose the flexural strength and shear strength for flexural members with steel fiber concrete. For strength evaluation, structural parameters such as compressive strength, steel fiber content, tensile reinforcement ratio, and shear span to effective depth ratio are involved. The proposed equations for flexural and shear strength are regarded to give a good prediction for the strength of steel fiber reinforced composite and/or RC beams to compare with equations by previous researchers. Especially, the proposed shear strength equation in this study shows the lowest the mean value, the coefficient of variation and the error ratio among predictions by several equations. Therefore, equations for shear strength and flexure strength, which are proposed in this study are to be useful measure to predict the actual behavior and failure mode of steel fiber reinforced composite beams.

Measures for Evaluating the Orthogonal Array of Strength 3 (강도 3의 직교대열을 평가하기 위한 측도)

  • Jang Dae-Heung
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.3
    • /
    • pp.617-625
    • /
    • 2005
  • We usually use orthogonal designs-orthogonal array of strength 2 as orthogonal arrays. It was shown that fractional factorial plaits represented by orthogonal arrays of strength 3 are universally optimal under the additive motels that includes the mean, all main effects and all two-factor interactions. Therefore, we need the measure for evaluating the orthogonal array of strength 3. We can extend this measure as the measure for evaluating the orthogonal array of strength t($\ge$ 2).

A Study on the Structural Strength Assessment of FRP Composites Boat (FRP 복합재료 선박의 구조강도 평가에 관한 연구)

  • Choi, Han-Kyu;Kwon, Soo-Yeon
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.28
    • /
    • pp.46-63
    • /
    • 2010
  • 플레저보트의 고강도 및 경량화 추세에 따라 복합재료 등 관련 소재의 경량화가 요구되었고, 이에 부응하여 관련 신소재 개발과 진공성형 신건조공법 등이 출현하였으며, 이러한 신공법을 이용한 선박건조가 증가하고 있는 실정에 따라 선박의 구조강도 평가가 중요한 과제로 부각되고 있다. 또한 선박의 안전성 확보와 고객의 편리 도모를 위한 플레저보트 구조강도 확인을 위한 시험방법 등도 다양화할 필요가 있다. 따라서 진공적층 및 수적층 성형방법으로 건조한 플레저보트를 대상으로 선체구조 강도 시험 결과를 비교 분석하여 우리 실정에 적합하고 플레저보트의 안정성 평가를 위한 선체구조 강도 시험 기준안을 제시하고자 한다.

  • PDF

Experimental Evaluation Study on the Integrity of Plastic Shell Structure using Acoustic Emission Technique (음향방출기법을 응용한 플라스틱 쉘 구조물의 건전성 평가 연구)

  • Shul, Chang-Won;Lee, Kee-Bhum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.39-47
    • /
    • 2005
  • An acoustic emission technique is applied to the tensile tests of the plastic specimen under the different test speeds and the structural integrity evaluation of the plastic shell structure. Several AE characteristics are acquired from the tensile tests and they are proven to be useful parameters in evaluating its structural integrity. The results shows that tensile strength has almost constant value over some higher speed region while revealing some increasing tendency in strength as the test speeds up in lower speed region. The crack initiation loads and locations are accurately evaluated during the static compression testing of the plastic shell structures by using acoustic emission technique.

Analysis on Occupational Injury of Job Type using Dong-eui Safety Index (동의 안전지수를 이용한 업종별 산업재해 분석)

  • 김유창
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2000.05a
    • /
    • pp.309-314
    • /
    • 2000
  • 산업안전을 평가하는 지수개발은 안전 프로그램의 발전 방향에 크게 기여하기 때문에 매우 중요하다. 한국에서는 현재 사업장의 안전평가를 위해서 산업재해 평가지수로서 재해빈도를 나타내는 도수율과 재해 강도를 나타내는 강도율을 주로 사용하고 있으며 그외에 연천인율, 종합재해지수등도 사용되고 있다. 이러한 산업안전평가지수들은 근로자들이 느끼는 주관적 안전의 정도를 나타내지 못한다. 근로자들이 느끼는 안전의 정도를 도수율과 강도율의 함수로 나타낸 평가지수인 동의안전지수(동의안전지수=0.2*도수율10.8*강도율)가 최근 개발되었다. 본 논문은 동의 안전지수를 이용하여 업종별 분석을 실시하여 업종별 근로자가 느끼는 위험의 정도를 알아내고, 이를 근거로 업종별 효과적인 안전관리 방안을 제시하고자 한다.

  • PDF

Evaluation of physical properties and non-flammability of Nylon6 using melamine-based halogen-free flame retardant. (멜라민계 난연제를 이용한 Nylons 의 난연성 및 물리적 특성 평가)

  • Kim Dong-Hak;Ryu Kwan-Suk
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.11a
    • /
    • pp.296-298
    • /
    • 2004
  • 본 연구에서는 압출성형에서 Nylon6 를 기재로 멜라민계 난연제를 사용하여 난연성 및 물성평가를 비교, 분석하였다. 멜라민계 난연제를 선택한 이유는 탈할로겐화 추세에 일조를 하며 연기가 적고, 생분해를 하는 물질이기 때문에 큰 장점이 있다. 또한 새로운 제품 및 적용범위를 발굴하기가 상대적으로 용이하다는 장점이 있기 때문에 멜라민계 난연제를 선택하였다. 난연 Test는 UL-94 측정방법을 이용하였고 물성평가는 UTM 측정기기로 인장강도, 연신율, 굴곡강도, 굴곡탄성율 측정하였다. 또 충격강도 시험기로 충격강도를 측정하였고, 물성평가 경우에는 난연제로 인한 물성저하를 최소화 하기위해 Nano-clay 를 첨가하여 비교하였다. 연구결과는 난연 Test 경우 난연제의 함량이 $5wt\%$ 이상이면 V0급으로 나왔고 물성평가에서는 Nanoclay를 첨가한 실험이 물성저하를 대처할 수 있을 정도의 결과로 보여 진다.

  • PDF

Capacity and Length of Compression Lap Splice in Unconfined Concrete of 100MPa and Less Compressive Strength (횡보강근이 없는 100 MPa 이하 콘크리트의 철근 압축이음 강도와 이음길이)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.659-666
    • /
    • 2010
  • Although the compression splice needs not be longer than the tension slice due to existence of end bearing, current design codes impose a longer compression lap splice than a tension lap splice in high strength concrete. Hence, new criteria for the compression lap splice including the effects of concrete strength need to be sought for economical design involving ultra-high strength concrete. An experimental study has been conducted with column specimens in concrete strength of 80 and 100 MPa. Test results show that the splice strength can be evaluated to be proportional to square root of compressive strength of concrete. Bar stress developed by end bearing is not affected by splice length and is expressed with a function of the square root of concrete strength. Mean value of stresses developed by end bearing is 16.5 square root of $f_{ck}$. The stresses developed by bond in compression splices are nearly identical to those in tension splices and, therefore, strength increment of compression splices is attributed to end bearing only. From regression analysis of 58 tests, a design equation is proposed for compression lap splice in 40 to 100 MPa of compressive strength of concrete. By the proposed equation, the anomaly of lap lengths in tension and compression is got rid of. In addition, the equation has a reliability equivalent to those of the specified strengths of materials.