• Title/Summary/Keyword: 강도계수변화율

Search Result 122, Processing Time 0.021 seconds

Performance Evaluation of Eco-friendly Permeable Block Using Basalt Waste Rock (현무암 폐석을 이용한 친환경 투수블록의 성능평가)

  • Sang-Soo Lee;Hyeong-Soon Kwon;Jae-Hwan Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.299-306
    • /
    • 2023
  • Environmental pollution problems are occurring due to the negative treatment of basalt waste in Jeju Island. This study identifies the characteristics of permeable block with basalt with physical and chemical adsorption mechanisms and examines their applicability and functionality as building materials. This experiment is basic data for evaluating the functionality of the permeable block by analyzing flexural strength, compressive strength, permeability coefficient, carbon dioxide, and fine dust adsorption rate by producing a permeable block using a basalt waste rock. As the basalt waste stone replacement rate increased, the flexural strength and compressive strength tended to decrease, and as the replacement rate increased, the water permeability coefficient, absorption rate, carbon dioxide, and fine dust adsorption rate tended to increase. Therefore, it is judged that the permeable block using the basalt waste rock is superior to the existing permeable block.

Strength Prediction of Cement-Admixed using Low Plasticity Silt (저소성실트를 이용한 시멘트 혼합토의 강도 예측)

  • Park, Jongchan;Park, Minchul;Jeon, Jesung;Jeong, Sangguk;Park, Kyunghan;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.7
    • /
    • pp.31-38
    • /
    • 2014
  • For analysis of mechanics properties of soil cement, unconfined compressive strength has been proposed by existing case studies. In this study, mechanical changes with water content of silt, curing time and cement content were analyzed through unconfined compressive strength test. In addition, the changes for B factor by Abrams were compared with existing case studies after the prediction equations could be proposed about the unconfined compressive strength of admixed cement soil. Especially, the B constant factor was changed with soil characteristics and curing time. For analysis results of appropriateness status and unconfined compressive strength, consideration of variable form was titrated. The prediction equations at low plasticity silt admixed using the uniaxial compressive strength with applying Abrams's equation and considering cement content, curing time is proposed.

Characterization of Compressive Strength and Elastic Modulus of Recycled Aggregate Concrete with Respect to Replacement Ratios (순환골재 치환율에 따른 순환골재콘크리트의 압축강도 및 탄성계수 특성)

  • Sim, Jongsung;Park, Cheolwoo;Park, Sung Jae;Kim, Yong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.213-218
    • /
    • 2006
  • As a manufacturing process of recycled aggregate improves the quality of recycled aggregate shall be sufficient enough to be used for structural concrete. This study characterized compressive strength and elastic modulus of concrete that used recycled coarse and fine aggregate. Before the strength tests, the fundamental characteristics of recycled aggregate were preliminarily analyzed and the recycled aggregate satisfied the class 1 requirements in KS F 2573. As the replacement ratio increased, the compressive strength and elastic modulus of recycled aggregate concrete decreased. When the coarse and fine aggregates were completely replaced with the recycled, the compressive strength and elastic modulus were decreased by 13% and 31%, respectively. Based on the test results, this study suggests equations for predicting the compressive strength and elastic modulus of the recycled aggregate concrete with respect to the replacement ratio. The values from the equations were in good agreement with the test data from this study and others.

The Effect of the Replacement of Grinded Fly Ash according to Curing Temperature on Repair Mortar Based on Polymer Admixture (폴리머수지 기반 보수모르타르에서 양생온도에 따른 미분쇄된 플라이애시 치환율의 영향)

  • Sim, Jae-Il;Mun, Ju-Hyun;Yun, In-Gu;Jeon, Young-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.116-124
    • /
    • 2015
  • The objective of this study is to evaluate the effects of the replacement levels of grinded fly-ash on the repaired mortar based on a polymer. The main parameters are the curing temperature and replacement levels of grinded fly-ash. The curing temperature and the replacement levels of grinded fly-ash are varied at $40^{\circ}C$, $20^{\circ}C$ and $5^{\circ}C$, and between 0% and 35% of the total binder by weight, respectively. The flow in fresh mortar and compressive strengths according to ages, the relationship of stress-strain, elastic modulus and modulus rupture in hardened mortar, as well as scanning the electron microscopy and the X-ray diffraction of mortar, were measured, respectively. The test results showed that the flow, elastic modulus and modulus rupture are great in mortar specimens with 20~30% of the replacement levels of grinded fly-ash. In addition, compressive strengths according to ages were affected by the replacement levels of grinded fly-ash and the curing temperature indicated that the strength development ratio of mortar with 20% of the replacement levels of grinded fly-ash was greater than others. In the prediction of the compressive strength specified by the ACI 209 code, the strength development at an early and late age can be generalized by the functions of the replacement levels of grinded fly-ash and the curing temperature. In the analysis of scanning the electron microscopy and the X-ray diffraction, the number and intensity of peaks increased and the form of CSH gels on the surface of the particle of grinded fly-ash was observed.

Analysis of statistics and Runoff Characteristic of a Mine (기타광물질 지역의 유출특성 및 통계분석)

  • Kim, Tae-Yoo;Choi, Yong-Hun;Shin, Hyun-Jun;Won, Chul-Hee;Choi, Jung-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1063-1067
    • /
    • 2009
  • 강원도 홍천군에 위치한 기타광물질 지역의 유출과 수질농도의 특성을 파악하기 위하여 연구를 수행하였다. 연구기간동안 13회의 강우사상에 대하여 모니터링을 실시하였다. 13회의 강우모니터링 기간동안 발생한 강우량은 6.5 ${\sim}$ 149.0 mm의 범위를 나타냈고, 유출계수는 0.28${\sim}$0.98의 범위를 나타냈다. 유출률은 수리, 수문,지형 및 지질학적 특성 등 여러 가지 요인에 의하여 변화할 수 있다. 어느 한 지역의 강우사상에서 강우량과 강우강도 그리고 선행무강우일수 등의 수리, 수문학적 특성은 유출량과 유출율의 크기에 큰 영향을 준다. 강우량과 선행무강우일수 그리고 강우강도와 유출율의 상관관계에서 유출률은 강우량과 강우강도가 증가할수록 선행무강우일수가 감소할수록 증가하는 경향을 나타냈다. 또한 유출율과 강우량, 선행무강우일수, 평균강우강도 그리고 최대강우강도의 Pearson 상관계수는 0.75857, -0.36346, 0.68323 그리고 0.74594로 나타났으며, 강우량, 평균강우강도, 최대강우강도는 유의수준 0.05에서 통계적으로 유의하며 유출율과 강우량의 관계가 가장 큰 것으로 나타났다. 기타광물질 지역의 수질농도들 사이의 상관관계는 $COD_{Cr}$$COD_{Mn}$에서 0.81097로 가장 큰 상관계수가 나타났으며, 유기물질인 $COD_{Cr}$, $COD_{mn}$, BOD 그리고 TOC는 통계적으로 유의한 상관 계수를 갖는 것으로 나타났다. 하지만 유기물을 제외한 다른 수질항목은 큰 관계가 없는 것으로 나타났다. 기타광물질 지역의 유출수와 수질농도의 특성을 더 신뢰성있고 과학적으로 검증하기 위한 장기적인 연구와 노력이 더욱 필요할 것으로 사료된다.

  • PDF

Strength Prediction of Mixing Condition and Curing Time Using Cement-Admixed Marine Clay (해성점토를 이용한 시멘트 혼합토의 배합조건 및 재령일별 강도 예측)

  • Jeon, Je-Sung;Park, Min-Chul;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.45-56
    • /
    • 2013
  • Abrams equation could be effectively applied to predict strength of cement-admixed clay and clay-water content to cement content ratio is a fundamental parameter for governing strength. This paper analyses unconfined compression strength varying with $w_c/C$ and curing time using laboratory test results. An attempt is made to identify strength of composite soil of cement and clay according to variation of Abrams coefficients and curing time. The value B, which was considered to be constant value in past researches, needs to be considered as parameter variable with curing time. From Abrams equation a correlation was formed for unconfined compression strength with mixing conditions by $w_c/C$ and curing time as dependent variable. Regression results in this paper could be used to predict strength of cement-admixed clay at various mixing conditions.

Analysis of Correlation between Flexural Strength and Pore Characteristics on CFRP Rebar as Fabrication Method (탄소보강근의 제조 조건에 따른 휨강도와 기공 특성과의 상관성 분석)

  • Kim, Nam-Il;Kwon, Do-Young;Chu, Yong-Sik
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.328-333
    • /
    • 2022
  • In this study, the fabrication conditions of CFRP rebar were controlled to derive the correlation between flexural strength and pore characteristics. The fabrication conditions of CFRP rebar were adjusted for presence or absence of rib, resin temperature, and curing furnace temperature. Flexural strength and pore characteristics of fabricated CFRP rebar were analyzed. The flexural strength of CFRP rebar was changed depending on the fabrication condition, such as the presence or absence of rib, the resin temperature, and the curing furnace temperature. It was confirmed that the flexural strength of CFRP rebar was significantly lowered when the rib was not wound. As a result of Nano X-ray CT analysis, the max. pore diameter was shown in CFRP rebar prepared at a resin temperature of 60℃. According to optical microscopic analysis, the maximum porosity was 6.89% in No. 1, and the minimum porosity was 2.88% in No. 7. The correlation coefficient between porosity used optical microscopy and flexural strength was -0.64, which was higher than the correlation coefficient between porosity or pore size used Nano X-ray CT and flexural strength.

Evaluation of Chloride Penetration in Concrete with Ground Granulated Blast Furnace Slag considering Fineness and Replacement Ratio (고로슬래그 미분말 콘크리트의 분말도 및 치환율에 따른 염해 저항성 평가)

  • Lee, Hyun-Ho;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.26-34
    • /
    • 2013
  • Durability performance in RC structures varies significantly with changes in cover depth and mix proportions. GGBFS (Ground Granulated Blast Furnace Slag) is very effective mineral admixture and widely used for an improved resistance to chloride attack. In this paper, characteristics such as porosity, compressive strength, and diffusion coefficient are evaluated in GGBFS concrete with 30~70% of replacement ratio and $4,000{\sim}8,000cm^2/g$ of fineness. Through the tests, more dense pore structure, higher compressive strength, and lower diffusion coefficient are obtained in GGBFS concrete, which are evaluated to be more dependent on replacement ratio than fineness. With increasing curing period from 3 to 91 days, porosity decreases to 77.47% and strength increases to 373% in GGBFS concrete. Chloride diffusion coefficient in GGBFS concrete decreases to 64.4% compared with that in OPC concrete, which shows significant improvement of durability performance.

An Experimental Study on the Properties of Porous Concrete according to the Mix Factors and Compaction Load (배합조건 및 다짐하중에 따른 포러스 콘크리트의 특성에 관한 실험적 연구)

  • Lim, Seo-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.83-91
    • /
    • 2015
  • Porous concrete consists of cement, water and coarse aggregate and has been used for the purpose of decreasing the earth environmental load such as air and water permeability, sound absorption, etc. However, the physical and mechanical properties of porous concrete changes due to compaction load during construction. For such a reason, the purpose of this study is to investigate the physical and mechanical properties of porous concrete according to the kinds of binder, the ratio of water to binder and target void ratio. In particular, this study has been carried out to investigate the influence of compaction load on the void ratio, strength and coefficient of permeability. Aggregate used in this study are by-products generated during production of crushed gravel with a maximum size of 13mm. The results of this study showed that the target void ratio, the coefficient of permeability and compressive strength of porous concrete had a close relationship with the void ratio, and it will be possible that the void ratio is suggested by the mix design of porous concrete. The compressive strength of porous concrete was the highest at the content of the expansive admixture of 5% and compared to non-mixture, 10% mixture of silica fume improved compressive strength about 32%. And in the result of the study to change the compaction load, the compressive strength increased from the load of 15kN, the void ratio decreased from the load of 0.8kN, the coefficient of permeability decreased from the load 35kN, respectively.

Influence of Rainfall Intensity and Saturated Permeability on Slope Stability during Rainfall Infiltration (강우침투시 강우강도와 포화투수계수가 안전율에 미치는 영향)

  • Lee, Seung-Rae;Oh, Tae-Kyu;Kim, Yun-Ki;Kim, Hee-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.65-76
    • /
    • 2009
  • The unsaturated characteristics of Korean weathered granite soils have been studied to investigate the influence of saturated permeability, rainfall intensity and soil-water characteristic curve (SWCC) on the slope stability. The upper, average and lower SWCCs were estimated from the publication and experimental results using the statistical concept. The roughly estimated SWCC can be used for the soils without experimental results by relating SWCC with the particle size distribution curve. An appropriate ratio between the saturated permeability and the rainfall intensity ($k_s$/i) was also suggested for practical use in designing the slopes by investigating the time-dependent variation of slope instability during the rainfall. The slope stability was deteriorated from the initiation of rainfall and recovered again after the factor of safety reached the critical value. The FS of the slope decreased at first and then increased after reaching the critical value during the rainfall. As a result, the slope instability was not related with an absolute rainfall intensity but with the ratio between the saturated permeability and the rainfall intensity. In case of the upper SWCC, the critical condition occurred when the ratio between the saturated permeability and the rainfall intensity was in the range of $1.0{\sim}2.0$.