• Title/Summary/Keyword: 강건한 파라미터 추정

Search Result 10, Processing Time 0.027 seconds

B-snake Based Lane Detection with Feature Merging and Extrinsic Camera Parameter Estimation (특징점 병합과 카메라 외부 파라미터 추정 결과를 고려한 B-snake기반 차선 검출)

  • Ha, Sangheon;Kim, Gyeonghwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.215-224
    • /
    • 2013
  • This paper proposes a robust lane detection algorithm for bumpy or slope changing roads by estimating extrinsic camera parameters, which represent the pose of the camera mounted on the car. The proposed algorithm assumes that two lanes are parallel with the predefined width. The lane detection and the extrinsic camera parameter estimation are performed simultaneously by utilizing B-snake in motion compensated and merged feature map with consecutive sequences. The experimental results show the robustness of the proposed algorithm in various road environments. Furthermore, the accuracy of extrinsic camera parameter estimation is evaluated by calculating the distance to a preceding car with the estimated parameters and comparing to the radar-measured distance.

Multiple Homographies Estimation using a Guided Sequential RANSAC (가이드된 순차 RANSAC에 의한 다중 호모그래피 추정)

  • Park, Yong-Hee;Kwon, Oh-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.7
    • /
    • pp.10-22
    • /
    • 2010
  • This study proposes a new method of multiple homographies estimation between two images. With a large proportion of outliers, RANSAC is a general and very successful robust parameter estimator. However it is limited by the assumption that a single model acounts for all of the data inliers. Therefore, it has been suggested to sequentially apply RANSAC to estimate multiple 2D projective transformations. In this case, because outliers stay in the correspondence data set through the estimation process sequentially, it tends to progress slowly for all models. And, it is difficult to parallelize the sequential process due to the estimation order by the number of inliers for each model. We introduce a guided sequential RANSAC algorithm, using the local model instances that have been obtained from RANSAC procedure, which is able to reduce the number of random samples and deal simultaneously with multiple models.

A Robust Sensorless speed control of Sensorless BLDC Motor (센서리스 BLDC 전동기의 강인한 속도 제어)

  • Kim, Jong-Seon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.4
    • /
    • pp.266-275
    • /
    • 2008
  • The sensorless speed control technique for BLDC motor using digital IP control is proposed in this paper for advanced speed characteristic which is robust to motor parameters and load variations. The sensorless drive of BLDC motor using terminal voltages is affected by load or speed because it uses analog filters to estimate the rotor position. For this reason, the robust speed controller with the accurate rotor position estimator is needed for sensorless control which is robust to load and insensitive to motor parameters. The constant speed robust to load variation and the stable sensorless control of BLDC motor robust to the increase or decrease of speed with constant load is implemented using digital IP control in this paper. The validity to these is established with experimentation.

  • PDF

Design of a Robust Estimator for Vehicle Roll State for Prevention of Vehicle Rollover (차량 전복 방지를 위한 강건한 롤 상태 추정기 설계)

  • Park, Jee-In;Yi, Kyoung-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1103-1108
    • /
    • 2007
  • This paper describes a robust model-based roll state estimator for application to the detection of impending vehicle rollover. The roll state estimator is based on a 2-D bicycle model and a roll model to estimate the maneuver-induced vehicle roll motion. The measurement signals are lateral acceleration, yaw rate, steering angle, and vehicle speed. Vehicle mass is adapted to obtain robust performance of the estimator. Computer simulation is conducted to evaluate the proposed roll state estimator by using a validated vehicle simulator. It is shown that the roll state estimator shows robust performance without exact vehicle mass information.

  • PDF

Echo Canceller with Improved Performance in Noisy Environments (잡음에 강인한 반향 제거기 연구)

  • 이세원;박호종
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.261-268
    • /
    • 2003
  • Conventional acoustic echo cancellers using ES algorithm have simple structure and fast convergence speed compared with those using NLMS algorithm, but they are very weak to external noise because ES algorithm updates the adaptive filter taps based on average energy reduction rate of room impulse response in specific acoustical condition. To solve this problem, in this paper, a new update algorithm for acoustic echo canceller with stepsize matrix generator is proposed. A set of stepsizes is determined based on residual error energy which is estimated by two moving average operators, and applied to the echo canceller in matrix from, resulting in improved convergence speed. Simulations in various noise condition show that the proposed algorithm improves the robustness of acoustic echo canceller to external noise.

LQ control by linear model of Inverted Pendulum for Robust Control of Robotic Vacuum Sweeping Machine (연마기 로봇의 강인제어를 위한 역진자의 선형화 모델을 통한 LQ제어)

  • Kim, Soo-Young;Lee, Jae-Duck;Jin, Tae-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.529-532
    • /
    • 2012
  • This paper presents the system modeling, analysis, and controller design and implementation with a inverted pendulum system in order to test robust algorithm for sweeping machine. The balancing of an inverted pendulum by moving pendulum robot like as 'segway' along a horizontal track is a classic problem in the area of control. This paper will describe two methods to swing a pendulum attached to a cart from an initial downwards position to an upright position and maintain that state. The results of real experiment show that the proposed control system has superior performance for following a reference command at certain initial conditions.

  • PDF

Model Reference Adaptive Control of a Quadrotor Considering the Uncertainty of Payload (유상하중의 불확실성을 고려한 쿼드로터의 모델 참조 적응제어 기법 설계)

  • Lee, Dongwoo;Kim, Lamsu;Jang, Kwangwoo;Lee, Seongheon;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.749-757
    • /
    • 2021
  • In transportation missions using quadrotor, the payload may change the model parameters, such as mass, moment of inertia, and center of gravity. Moreover, if position of the payload is constantly changing during flight, the effect can adversely affect the control performances. To handle this issue, we suggest Model Reference Adaptive Control based on Linear Quadratic Regulator(LQR+MRAC) to compensate the uncertainty caused by payload. Firstly, the mathematical modeling with the fixed payload is derived. Second, Linear Quadratic Regulator (LQR) is used to design the reference model and baseline controller. Also, through the Stability method, Adaptive law is derived to estimate the model parameters. To verify the performance of proposed control scheme, we compared LQR and LQR+MRAC in situations where uncertainties exist. And, when the disturbance exist, the classic MRAC and proposed controller is compared to analyze the transient response and robustness.

A Position control of an electro-mechanical actuation system using Time Delay Observar(TDO) (시간지연 관측기를 이용한 전기식 구동시스템의 위치제어)

  • Lee, Young-Cheol;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.1999-2001
    • /
    • 2003
  • 본 논문에서는 시간지연 관측기를 위치제어 시스템 적용하여 설계한 내용을 기술하였다. 시간지연제어기의 상태추정 기법을 이용한 시간지연 관측기는 플랜트 모델이 필요하지 않아 설계가 용이하고, 파라미터 변동 및 외란에 강건하다. 또한 계산이 간단하여 디지털 제어 시스템에 충분히 적용이 가능하다. 본 논문에서는 시간지연제어기가 위치제어기로 적용된 전기식 구동시스템에서 속도센서를 사용하지 않고 시간지연 관측기를 적용하여 제어기를 설계하였다. 시간지연 관측기를 적용한 구동시스템에 대해 비선형 시뮬레이션을 수행하였으며. 속도센서를 사용한 경우와 상태관측기를 적용한 경우 및 PID 제어기를 적용한 경우에 대해 비교하였다.

  • PDF

Wavelet transform-based hierarchical active shape model for object tracking (객체추적을 위한 웨이블릿 기반 계층적 능동형태 모델)

  • Kim Hyunjong;Shin Jeongho;Lee Seong-won;Paik Joonki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11C
    • /
    • pp.1551-1563
    • /
    • 2004
  • This paper proposes a hierarchical approach to shape model ASM using wavelet transform. Local structure model fitting in the ASM plays an important role in model-based pose and shape analysis. The proposed algorithm can robustly find good solutions in complex images by using wavelet decomposition. we also proposed effective method that estimates and corrects object's movement by using Wavelet transform-based hierarchical motion estimation scheme for ASM-based, real-time video tracking. The proposed algorithm has been tested for various sequences containing human motion to demonstrate the improved performance of the proposed object tracking.

A literature review on RSM-based robust parameter design (RPD): Experimental design, estimation modeling, and optimization methods (반응표면법기반 강건파라미터설계에 대한 문헌연구: 실험설계, 추정 모형, 최적화 방법)

  • Le, Tuan-Ho;Shin, Sangmun
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.1
    • /
    • pp.39-74
    • /
    • 2018
  • Purpose: For more than 30 years, robust parameter design (RPD), which attempts to minimize the process bias (i.e., deviation between the mean and the target) and its variability simultaneously, has received consistent attention from researchers in academia and industry. Based on Taguchi's philosophy, a number of RPD methodologies have been developed to improve the quality of products and processes. The primary purpose of this paper is to review and discuss existing RPD methodologies in terms of the three sequential RPD procedures of experimental design, parameter estimation, and optimization. Methods: This literature study composes three review aspects including experimental design, estimation modeling, and optimization methods. Results: To analyze the benefits and weaknesses of conventional RPD methods and investigate the requirements of future research, we first analyze a variety of experimental formats associated with input control and noise factors, output responses and replication, and estimation approaches. Secondly, existing estimation methods are categorized according to their implementation of least-squares, maximum likelihood estimation, generalized linear models, Bayesian techniques, or the response surface methodology. Thirdly, optimization models for single and multiple responses problems are analyzed within their historical and functional framework. Conclusion: This study identifies the current RPD foundations and unresolved problems, including ample discussion of further directions of study.