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ABSTRACT

Purpose: For more than 30 years, robust parameter design (RPD), which attempts to minimize the process 

bias (i.e., deviation between the mean and the target) and its variability simultaneously, has received consistent 

attention from researchers in academia and industry. Based on Taguchi’s philosophy, a number of RPD method-

ologies have been developed to improve the quality of products and processes. The primary purpose of this 

paper is to review and discuss existing RPD methodologies in terms of the three sequential RPD procedures 

of experimental design, parameter estimation, and optimization.

Methods: This literature study composes three review aspects including experimental design, estimation mod-

eling, and optimization methods.

Results: To analyze the benefits and weaknesses of conventional RPD methods and investigate the require-

ments of future research, we first analyze a variety of experimental formats associated with input control 

and noise factors, output responses and replication, and estimation approaches. Secondly, existing estimation 

methods are categorized according to their implementation of least-squares, maximum likelihood estimation, 

generalized linear models, Bayesian techniques, or the response surface methodology. Thirdly, optimization 

models for single and multiple responses problems are analyzed within their historical and functional 

framework. 
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Conclusion: This study identifies the current RPD foundations and unresolved problems, including ample dis-

cussion of further directions of study.

Keywords: Robust Design, Design of Experiments, Response Surface Methodology, Parameter Estimation, 

Optimization. 

1. Introduction

Starting in the mid- to late-1940s, the Japanese manufacturing industry struggled to survive under ex-

tremely limited resources. Many scientists and researchers attempted to revolutionize the manufacturing 

processes in order to improve the quality of manufactured goods and reduce costs. Taguchi, a Japanese 

consultant, realized that all manufacturing processes are affected by sources of noise that have significant 

effects on product variability. Consequently, in the 1950s, Taguchi introduced an important methodology 

based on statistics to control the quality of products and processes in the design stage; this was popular-

ized in the USA in the 1980s. Taguchi’s methodology is the basic foundation of what is generally named 

robust parameter design (RPD) or, briefly, robust design.

In this statistical approach to quality control engineering, products and processes are usually considered 

as a box or system with inputs and outputs (commonly represented by y). Taguchi classified pertinent in-

puts into two categories: control factors (normally denoted by x) and noise factors (normally denoted by 

z). Whereas noise factors are difficult or too expensive to control (or potentially even uncontrollable), the 

control factors can be easily manipulated within the system. The objective of RPD is to select the best 

combinations of control factors to optimize the quality level of a product by reducing the product’s sensi-

tivity to noise factors. Taguchi designed a number of unique orthogonal arrays (which are essentially bal-

anced fractional factorial designs) to aid in the development of experiments. While noise was treated as a 

nuisance (blocking) in the traditional design of experimental methods, Taguchi examined the effects of 

noise factors on experimental designs. The settings of the control factors are contained in an inner array, 

whereas an outer array is used to contain the noise factor settings for a particular run. This explicit in-

clusion of noise variables is an important contribution of Taguchi’s (Lucas, 1994). To determine the optimal 

factor settings, Taguchi considered both the mean and variance of the characteristics of interest as a single 

performance measure, and used signal theory to derive a number of signal-to-noise ratios (SNRs) from the 

Taguchi loss function. Among over 60 types of SNR, three are widely used: nominal is best, larger is bet-

ter, and smaller is better. The appropriate SNRs can be chosen to achieve the optimal control factors x 

based on the maximization or minimization of some objective function. 

Nominal is best

(1)

Larger is better:
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(2)

Smaller is better:

(3)

Taguchi’s philosophy received considerable attention from statisticians and researchers, and thus made 

a remarkable contribution toward the improvement of product/process quality. However, Taguchi’s proce-

dure for solving the RPD problems has been criticized for several shortcomings regarding the orthogonal 

arrays and SNRs. Firstly, in the experimental design, controllable and uncontrollable factors are placed in 

two separate arrays (i.e., inner and outer), resulting in more experimental runs (Shoemaker and Tsui, 

1991); secondly, the use of orthogonal arrays is rather limited and fails to investigate the interactions be-

tween control and noise factors (Myers and Montgomery, 1995). The combination of control and noise fac-

tors in a single array is more economical and superior to the orthogonal arrays. Moreover, the arguments 

for the universal use of SNRs are unconvincing (Vining and Myers, 1990; Yum et al., 2013; Byun et al., 

2013). In addition, Taguchi’s method does not exploit a step-by-step method to determine the optimal pa-

rameter settings. 

Therefore, alternative approaches that are more efficient than Taguchi’s method have been proposed in 

an attempt to establish a systematic procedure based on his philosophy. A new research trend has derived 

from the dual response (DR) model based on the response surface methodology (RSM), which was proposed 

by Vining and Myers (1990). This approach includes two significant contributions: (1) in terms of estima-

tion, the mean and variance of the output responses are considered and estimated as two separate func-

tions of input factors based on the least-squares method (LSM); and (2) in terms of optimization, a robust 

design model is used to investigate the trade-off between the estimated mean and variance functions. 

Based on the DR model approach, the second development stage of RPD has three sequential stages: the 

design of experiments, estimation, and optimization.

RSM is a collection of mathematical and statistical techniques that are useful for modeling and analyzing 

problems in which the response of interest is influenced by several factors. When the exact functional rela-

tionship is not known or very complicated, conventional LSM is typically used to estimate the functional 

forms of the input response (Box and Draper, 1987; Khuri and Cornell, 1987). To use LSM-based RSM, the 

basic assumption is that the error terms are independent and normally distributed with constant variance 

and zero expectation. Unfortunately, this assumption is often violated in practical scenarios. Subsequently, 

a number of estimation approaches for the unknown model parameters in the mean and variance functions 

have been proposed, such as weighted least-squares (WLS) (Luner, 1994), Bayesian estimation (Chen and 

Ye, 2011; Goegebeur et al., 2007), and generalized linear models (Nelder and Lee, 1991). Along with the 

development of estimation methods for the DR model, the single-response (SR) model based on RSM can 
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also handle the functional relationships between the output responses and both control and noise factors. 

The interactions between the control and noise factors and the quadratic interactions among noise factors 

in the SR model have been considered by Myers (1992) and Abate et al. (2007), respectively. 

In conjunction with the development of estimation methods, several RPD optimization models have been 

proposed and extended to determine the optimal factor settings. Using various criteria, these optimization 

models consider the trade-off between the bias and variance, with examples including the mean square er-

ror model (Lin and Tu, 1995), weighted sum model (Cho et al., 1996; Koksoy and Doganaksoy, 2003), fuzzy 

model (1998), desirability function model (Borror, 1998), and bias-specified model (Shin and Cho, 2005); or 

between multiple responses, such as the quality loss function model (Ames et al., 1997), dual re-

sponse-based quality loss model (Romano et al., 2004), lexicographical weighted-Tchebycheff model (Shin 

and Cho, 2009), and lexicographical dynamic goal programming model (Nha et al., 2013).

It is more than 30 years since RPD was first introduced, and a variety of solution methods have been 

proposed to solve the associated problems. Information about the various approaches is scattered through-

out the literature and has not yet been fully reviewed in terms of a systematic understanding of the whole 

RPD methodology. Therefore, the great motivation for this paper is to provide a thorough and systematic 

discussion of the developments and limitations in the three basic stages of RPD. Firstly, the experimental 

formats related to both the control and noise factors and to the control factors alone are examined 

separately. This allows existing problems in the experimental design stage to be discussed in depth. 

Secondly, two major RPD modeling methods based on RSM, (i.e., SR and DR models) are investigated re-

garding their simulation of the relationships between the output and control factors both with and without 

noise. The use of generalized linear models (GLMs) as another technique and the trend of combining RPD 

with online techniques are also examined. A number of the associated estimation methods (i.e., LSM, MLE, 

Bayesian approach, and GLMs) reported in the literature are discussed and represented in timeline tables. 

Moreover, various RPD optimization models based on various criteria for single- and multiple-response 

problems are deliberated. Numerical examples using these estimation methods and optimization models are 

briefly discussed in this paper. Finally, based on existing methods, the requirements for future research and 

further developments in RPD are extensively investigated. As a result, this paper is not only a useful in-

troduction for those new to RPD, but also an important summary of the state-of-the-art for RPD 

researchers. Figure 1 illustrates an overview of the three basic stages of RPD with their associated 

classifications. A number of representative studies on both RPD estimation and optimization are shown in 

Figure 2, along with their corresponding experimental formats.

Existing problems in the design of experiments in various formats are highlighted in Section 2. Section 

3 then discusses the estimation methodologies in three different modeling approaches. The development 

stream of RPD optimization models for single and multiple responses is surveyed in detail in Section 4. 

Finally, a summary and conclusions close the paper in Section 5.
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Figure 1. Overview of the three basic stages of RPD and their associated classifications

Figure 2. Representative studies on both RPD estimation and optimization 
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2. Discussion of experimental formats

Theoretically, the design of experiments is intended to ensure that tests are conducted with deliberate 

changes by the experimenter regarding the input factors of the product/process so as to obtain information 

about the nature or phenomenon of the relationship between the input and output variables. As the number 

of input factors increase, the total number of combinations of factors increases significantly, and the rela-

tionships with the output responses become very complicated. In addition, if all experiments are inves-

tigated, the overall process becomes both expensive and time-consuming. Obviously, a well-designed ex-

periment is necessary to identify the “vital few” factors that obtain sufficient information about those com-

plex relationships in an effective and economical manner, and then determine the best settings for these 

factors to obtain satisfactory output functional performance in products/processes. 

In practice, some of the process variables or factors can be controlled and some of them are difficult or 

expensive to control during normal production or under standard conditions. Based on the existing prob-

lems, and the available time and cost, a suitable experimental design can be selected to conduct the 

experiments. The main objectives of the experiments may include the following (Montgomery, 2005):

 Determining which variables have most influence on the response.

 Determining where to set the influential input factors so that the response is almost always near the 

desired nominal value.

 Determining where to set the influential input factors so that the variability of the response is small.

 Determining where to set the influential input factors so that the effects of the uncontrollable varia-

bles are minimized.

In this paper, several experimental formats are discussed and classified into two major categories, name-

ly those including two separate arrays to handle both control and noise factors together and those with a 

single array to handle control factors only. 

2.1. Control and noise factors

In the context of manufacturing, a process is the transformation of input factors or process variables into 

output responses. The quality of the output products is determined by the variation of the inputs, especially 

the noise factors. Generally, noise factors are uncontrollable in most actual processes. However, they can 

be controlled in some specific conditions for the purpose of experiments. In RPD, two popular experimental 

formats are often used to design the experiments while considering both the noise and control factors. 

2.1.1. Experimental formats involving crossed array designs

Contrary to the previous work of statisticians, Taguchi incorporated noise factors into the experimental 

design to consider the influence of uncontrollable factors on the outputs, with the noise factors and their 

levels specified in a similar manner to those used for control factors. Based on a variety of defined orthog-
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onal arrays, Taguchi proposed a crossed array design consisting of an inner array and an outer array, as 

presented in Table 1. The inner array contains the control factors and the outer array consists of the noise 

factors. In Table 1, SNRs are used as a performance measure of the responses. In the crossed array de-

sign, each run in the inner array is performed with all combinations of noise factors in the existing outer 

array, and sufficient information about the interactive effects of control and noise factors on the output fac-

tors can be identified quickly. By using orthogonal arrays in the experiments, a number of variables that 

have the greatest effect on the performance characteristics can be determined. However, not all of the ef-

fects of all variables are considered by the orthogonal arrays, because not all variable combinations are 

examined. As a whole, the orthogonal arrays are useful for screening designs at the beginning of a project. 

To investigate all combinations of control factors, standard experimental design methods are generally ap-

plied to the inner array, and factorial designs or fractional factorial designs are suitable for implementing 

experiments for the noise factors in the outer array. Normally, the process mean and variance are em-

ployed as performance measures of the output responses instead of the SNRs in Table 1. Consequently, 

another experimental format using combined array designs is demonstrated in Table 2.

Table 1. Inner & outer arrays relating to orthogonal arrays and SNRs

Table 2. Inner & outer arrays relating to standard DoE and DR model
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The main limitation of the experimental formats illustrated in Tables 1 and 2 is that the number of repli-

cations of the response is dependent on the number of runs of noise factors in the outer array. In addition, 

the control and noise variables are assumed to be dependent, although in practice, the noise variables have 

a significant influence on the control variables. Other limitations are that the noise factors are not executed 

in the estimated mean and variance functions in the experimental format in Table 2, and the SNRs are un-

able to distinguish between inputs that affect the process mean from those that affect the variance in the 

experimental format in Table 1.

2.1.2. Experimental formats involving combined array designs

The crossed array designs generally result in a large number of experimental runs, because two separate 

designs are developed and then combined. Moreover, it is difficult to clarify the nonlinearities in the inter-

actions between the control and noise factors. To overcome the drawbacks of the crossed array designs, 

Borkowski and Lucas (1991), Box and Jones (1992b), Montgomery (1991), Myers (1991), Shoemaker et al. 

(1991), Welch and Sacks (1991), Sacks et al. (1989), and Myers et al. (1997) proposed alternative combined 

array designs in which the control and noise factors are combined in a single array. Considerable time and 

money can be saved using combined array designs, as they require fewer experimental runs than the 

crossed array designs. Depending on the replications of the output responses, combined array designs have 

two typical experiment formats, as represented in Tables 3 and 4.

Theoretically, the DR model approach is the fundamental method of modeling the relationship between 

the input and the responses of interest with replication. However, using the DR method to estimate the 

mean   and variance 

  functions in the experimental format depicted in Table 3 is impossible, 

as the noise factors are unmanageable and uncalculated. Hence, this experimental format is unfeasible. 

Table 3. Combined array designs with replication

Another experimental format for conducting experiments with the control and noise factors using the 

combined array design is demonstrated in Table 4. The SR model approach is typically used to obtain esti-

mated functional forms of the responses without replication. Normally, the errors of the noise factors are 

assumed to follow a normal distribution with zero mean and constant variance  ∼ 
. Based on this 

assumption, the process mean and variance are determined as functions of the control and noise factors 

(i.e.,     and    ) by taking the expectation and variance operators of the estimated 



Le & Shin : A literature review on RSM-based robust parameter design (RPD): Experimental design, 

estimation modeling, and optimization methods 47

function  , respectively. Assuming that the errors of the noise are independent and follow a standard 

normal distribution  ∼ , the process mean and variance are obtained as functions of control fac-

tors (i.e.,  and 

) and can be used to examine the optimal solutions. To the best of our knowledge, 

there is no way of estimating the variance of the error of noise factors 
 ; hence, the assumption on 

  

in this situation is not always acceptable.

Table 4. Combined array designs without replication

2.2. Control factors only

Most experiments and experimental design methods in the literature consider the control factors only. 

Based on replications of the responses of interest, two types of experimental formats in which the control 

variables are contained in the inner array are illustrated in Tables 5 and 6. Similarly, the DR model ap-

proach is employed to model the response with replication, as presented in Table 5, whereas the SR model 

method is used in Table 6.

Table 5. Inner array with replication

Table 6. Inner array without replication
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In these experimental formats, the design of experiments is simpler and requires less time than when 

noise factors are also considered. The limitation of the experimental formats in Tables 5 and 6 is that im-

portant information about the interactions between the control and noise factors is missed because the 

noise factors are not examined in the experiments. Therefore, the final optimal solutions may not indicate 

the highest degree of accuracy of the problems.

3. Estimation methods

3.1 Dual response model

The first attempt to integrate RSM into RPD as an alternative to Taguchi’s method is the DR model ap-

proach proposed by Vining and Myers (1990). In the DR framework, the mean and standard deviation of the 

response are taken as functions of the control factors using RSM and the unknown coefficients in both 

functions are estimated by LSM. Further intensive studies on the DR model based on LSM are discussed 

by Del Castillo and Montgomery (1993), Lin and Tu (1995), and Copeland and Nelson (1996). Shaibu and 

Cho (2009) observed that the accuracy of predictions given by the DR model based on LSM can be in-

creased by using higher-order polynomial response functions instead of the quadratic form in most RPD 

applications. Shaibu and Cho (2009) employed statistical model selection techniques to choose a pool of 

factors in the higher-order form. In contrast to these proposals for handling static responses, Shin et al. 

(2011a), Choi et al. (2012), and Nha et al. (2013) developed joint estimation methods using a two-direc-

tional (vertical and horizontal) approach to examine time-oriented responses in the pharmaceutical field.
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Figure 3. Overview of all estimation methods in the RPD estimation stage
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The DR model approach using LSM to estimate the model coefficients is the basic method, and is widely 

used in many RPD situations. Two basic assumptions of LSM are that all the data follow normal dis-

tributions and that random error terms are normally distributed with constant variances and zero means. 

Unfortunately, these assumptions are often violated in practical scenarios, meaning that the Gauss–Markov 

theorem is no longer valid. Consequently, methods such as transformation, WLS, MLE, and Bayesian tech-

niques are often applied to achieve valid estimations in industrial applications. The most popular method of 

transforming the dependent variable used to fit the model is the Box–Cox transformation, or power trans-

formation, which has been applied in RSM by Lindsey (1972).

By analyzing the Roman-style catapult study, a well-known example in RPD, Luner (1994) found that 

each of the input factors has a different impact on the output responses, and proposed the WLS method to 

estimate the model coefficients in the mean and variance functions. Moreover, Cho and Park (2005) gener-

alized a number of unbalanced data cases to use the WLS method in the DR model, such as an unequal 

number of replicates at each design point, some treatment combinations being more expensive than others, 

some treatment combinations being more interesting, and some missing experimental data.

To implement RSM using LSM, the data are commonly full sets of observations. In many industrial appli-

cations, however, partial sets of observations coexist with fully observed sets. Datasets consisting of both 

partially and fully observed records are commonly called incomplete (Lee and Park, 2006). For incomplete 

data, Lee and Park (2006) incorporated expectation-maximization and the MLE method into the DR model 

approach under the assumption that the observations are normally distributed. In other real-world sit-

uations, the experimental data obey non-normal distributions, for instance, censored data often follow the 

Weibull distribution. Cho and Shin (2012) applied the MLE method to estimate the mean and variance of 

pharmaceutical time-oriented data, that is, the censored Weibull data.

In the DR model based on LSM, the estimated variance can have a negative value, even if the true mean 

variance is positive throughout the region of interest. If the response at a point with a negative predicted 

variance happens to be the optimum under a certain criterion, it would be difficult to explain the process 

performance at this point (Chen and Ye, 2011). To overcome this drawback and attain meaningful optimal 

solutions, Chen and Ye (2011) introduced the Bayesian hierarchical approach, which is suitable for the hi-

erarchical structure of DR models, and two mathematical techniques based on a genetic algorithm and the 

generalized reduced gradient algorithm. This Bayesian hierarchical approach was extended to partially re-

plicated designs by Chen and Ye (2009). Goegebeur et al. (2007) also utilized the Bayesian hierarchical ap-

proach based on Gibbs sampling and the Metropolis–Hastings algorithm to determine the coefficients in the 

DR model. Another Bayesian approach for determining the mean and variance functions of the response of 

interest is to consider the uncertainty in the parameter estimates given by the Bayesian predictive density 

function, an approach proposed by Peterson (2000), Quesada et al. (2004), and Ragajopal and Del Castillo 

(2007). In addition, Ragajopal and Del Castillo (2005) introduced the Bayesian model averaging method to 

optimize the posterior predictive density function.

Based on Bayesian principles, Truong and Shin (2012, 2013) integrated the inverse problem (IP) into 

RPD in an attempt to relax the normality requirements of LSM-based RSM. A basic review of IP theory and 
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the application of IPs to model parameter estimation can be found in Tarantola (1987, 2005). In this RPD 

estimation method, two sequenced modeling steps (i.e., forward and inverse) are conducted after the pa-

rameterization of the system. Truong and Shin (2013) assumed that both the process mean and variance 

of the responses follow normal distributions, whereas an earlier study (Truong and Shin, 2012) assumed 

that the observed variances obey the Chi-square distribution. 

In all of the above RPD estimation methods, the sample mean and sample variance are used to fit the 

process mean and process variance functions, respectively. For non-normal data and/or contaminated data, 

Park and Cho (2003) and Lee et al., (2007) proved that the use of the sample mean and sample variance 

to model the dual response surface model is inappropriate. Instead, they proposed the median and median 

absolute deviation or interquartile range as good alternatives to the mean and variance, respectively, espe-

cially in the case of Laplace, logistic, and Cauchy distributions. To estimate these “mean and variance” 

functions, Park and Cho (2003) derived outlier-resistant estimators. However, it is well known that these 

estimators are inefficient in the case of a normal distribution. Therefore, Lee et al., (2007) recommended 

other highly efficient and resistant regression methods, such as Huber’s proposed 2M-estimation and re-

sistant regression based on MM-estimation. Furthermore, Ch’ng et al. (2007) applied the three-stage 

MM-estimator procedure defined by Yohai et al. (1991) to estimate the mean and variance functions. 

Huber’s proposed 2M-estimation and resistant regression based on MM-estimation are described in Huber 

(1981) and Yohai et al. (1991), respectively. The existence and classification of outliers in the context of 

regression models are explained in Montgomery et al. (2001). The estimation methods used in the DR mod-

el are summarized in Table 7.

Table 7. Overview of the estimation methods in the dual response model
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3.2. Single-response model

In combined array designs, the interactions between control and noise factors and among the various 

noise factors are investigated, and the resulting information about their effects on the output responses is 

exploited. From this information, the output responses can be modeled as a function of both control and 

noise factors using the SR model approach based on RSM. Regarding this modeling trend, Myers et al. 

(1992) commented that the methods for modeling the mean response have been thoroughly investigated 

because the mean is not related to the noise factors in the function, the attention directed toward variance 

modeling is considerable, and the model for the process variance is likely to be even more important than 

the model for the mean in RPD problems. The fundamental element of all estimation methods in this model-

ing direction relies on the assumptions made about the noise factors. Most modeling methods assume that 

the noise factors are either known or can be estimated well. In addition, the random error terms are also 

assumed to be NID . Because of the interaction between the control and noise factors, models in the 

SR approach can be classified into those with or without interactions between control and noise factors and 

those with quadratic interactions among the noise factors. The model introduced by Myers et al. (1992) has 

no interactions between the control factors and noise factors. Therefore, this should not be used in prac-

tice, because the process variance often relies on the control factors. 

In the literature, the SR model including the full quadratic form of the control factors, the main effects 

of noise, and the interactions between the control and noise factors is probably the most widely employed 

model for illustrating the output response as a function of the control and noise variables. Myers (1991), 

Myers and Montgomery (1995), Montgomery (1999), and Borror et al. (2002) assumed that the noise fac-

tors are uncorrelated and that their variance is known (i.e., ∼  ). The fitted response model can 

be obtained using LSM. Similarly, Myers et al. (1992), Myers and Montgomery (1995), and Myers et al. 

(1997) assumed that the noise factors are correlated and that the variance-covariance matrix   is known 

(i.e., ∼  ). However, in some cases, the noise factors will not occur simultaneously, and the 

noise components may be functions of other factors (Khattree, 1996). Based on this argument, Khattree 

(1996) extended the model of Myers et al. (1992) by assigning the control factors as blocks and analyzing 

the interaction among the associated noise factors in each block. This allows the identical estimated mean 

models for the process to be recovered, whereas the estimated variance surface responses are different 
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for each block. Rather than assuming that the noise factors have a zero mean, Dellino et al. (2010) set the 

mean value of the noise factors to  . The corresponding fitted mean model derived by Dellino et al. (2010) 

consists of the mean value of the noise factor. However, the estimated process variance function in this 

fitted model is not an unbiased operator, because it is the second-order function of the coefficients related 

to noise factors. Myers and Montgomery (2002) and Quesada and Del Castillo (2004) formulated an un-

biased estimator for the process variance by using a bias-correction term with the trace of the matrix. 

Even though that process variance is unbiased, the estimated variance can take negative values. Quesada 

(2003) and Quesada and Del Castillo (2004) demonstrated this to be correct when the coded control factors 

are far away from the origin; to overcome this shortcoming, both studies considered all sources of varia-

bility, consisting of the variability in the noise factors and in the parameter estimates, to construct the 

process variance functions.

The full and general form of the SR model approach proposed by Box and Jones (1992a) consists of the 

quadratic form of control factors and all interactions between the control and noise factors as well as those 

among the noise factors. To estimate the process mean and variance functions in this situation, Engel and 

Huele (2007) applied LSM with the assumption that ∼  . Another extension of the general SR model 

approach was reported by Abate (1995) and Abate et al. (1996) based on the assumptions that the noise fac-

tors are correlated and the mean value of the noise factor is not equal to zero (i.e., ∼  ). The trace 

and Kronecker product are used to determine the estimated mean and variance functions. The classification 

of all models in the SR approach and the associated discussions of each model are outlined in Table 8.
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Table 8. Classification of the models in the SR approach
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Most RPD methods reported in the literature are used to identify appropriate settings for the control fac-

tors in the offline design stage, thus reducing the process and product variability based on the assumption 

that the noise factors are well known or can be controlled in laboratory environments. The offline applica-

tion of RPD may be ineffective if there are noise factors with strong autocorrelation or non-stationarity, 

or if the noise factors can be measured during production (Pledger, 1996; Dasgupta and Wu, 2006). This 

has resulted in a new tendency whereby RPD is combined with online control techniques or schemes to 
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measure the noise factors during production and give better performance, namely online RPD. For the case 

of strong noise factors in the process, Joseph (2003) developed a general RPD methodology to find the op-

timal offline settings of control factors in the simultaneous presence of a feed-forward control law for a 

single additional control factor in single-response and multiple-target systems. Similar to Joseph (2003), 

Dasgupta and Wu (2006) developed an RPD framework with a discrete proportional-integral feedback con-

trol scheme based on a single experiment. They used a performance measure modeling approach to model 

the output as a function of the input variables. Jin and Ding (2004) classified noise factors into two sets: 

(i) observable noise   and (ii) unobservable noise  . Using the SR model based on RSM, Pledger 

(1996) and Jin and Ding (2004) incorporated feed-forward control into RPD so that the controllable factors 

could be adjusted online based on in-process observations of noise factors. The online automation of proc-

ess control using regression models discussed by Jin and Ding (2004) can also be applied to the uncertainty 

in the model parameters and the uncertainty in the measurements of the noise factors. Along this line, 

Apley and Kim (2011) developed a cautious control approach, a terminology used previously for quality 

control (Apley and Kim, 2004), that uses adaptive feedback to take model parameter uncertainty into ac-

count via the posterior parameter covariance. In contrast to the known noise variables assumption in the 

SR model approach of offline RPD, Tan and Ng (2009) investigated the effects of random sampling errors 

in the noise factors on the estimated mean and variance models, and proposed a framework for designing 

a combined array experiment and a new sampling method that estimates the mean and covariance of the 

noise factors. To reduce uncertainty in the response model and noise model parameters, Vanli and Del 

Castillo (2009) proposed a new Bayesian online RPD approach that calculates the posterior predictive den-

sity of the responses using a Bayesian response model robust control law and determines the predictive 

density of the noise factors through a Bayesian response and noise model robust control law. This is an 

extension of the Bayesian predictive approach to offline RPD used by Miro-Quesada et al. (2004) to derive 

closed-form control rules for use in online RPD. However, the posterior distributions of the model parame-

ters are obtained from offline data and are not updated with online observations during production. 

Therefore, Vanli et al. (2013) extended this approach to the adaptive case in which model estimates are 

updated with online observations by using Bayesian regression and time series models. This allows the op-

erators to re-compute the settings of the control factors online to better account for autocorrelation and 

non-stationary behavior in the noise factors. An overview of the methods used in online RPD with online 

control techniques and the associated discussions is presented in Table 9. 

The SR model approach introduced by Myers et al. (1992) is probably the most popular method of mod-

eling the response variables as a function of the control and noise variables for both online and offline RPD 

in quality improvement applications. The generalized linear modeling in the next subsection is a partial ex-

tension of this SR model method.
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Table 9. Overview of methods used in online RPD with online control techniques

3.3. Generalized linear models

Along with the development of the DR and SR modeling methods for determining the functional form of 

the input and output factors in RPD, GLMs have also been applied to RPD modeling. There are two distinct 

trends in the application of GLMs to RPD: GLMs as an extension of the SR model proposed by Myers et 

al. (1992), and GLMs as an alternative response modeling approach. Whereas Myers et al. (1992) were the 

first to suggest the former, Nelder and Lee (1991) pioneered the use of the latter. The theory of GLMs has 

been widely discussed in the literature. 

In the SR model approach, the residual variation 
  is often assumed to be constant. The assumption of 

constant variation in the residual error, however, is invalid because the noise factors are not included in 

the experiments (Engel and Huele, 1996). Therefore, the residual variation 
  can be rewritten as 



(similarly, the residual error becomes ). According to Engel and Huele (1996), GLMs can be used to mod-
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el 
  as an exponential function of the levels of design factors as 

  exp. An iteratively re-

weighted least-squares procedure is used to fit the estimated response surface for the process mean and 

process variance. For the non-normal response of quality characteristics, a general SR model approach un-

der a GLM structure (Myers et al., 2005) can be applied to give desirable functions by using both linear 

predictors and Taylor series approximation. Two quality measures with non-normal responses were inves-

tigated by Myers et al. (2005), namely a Poisson response with a log link and a binomial response with a 

canonical link. However, when observations within the same block are correlated with random block effects 

for non-normal quality characteristics, the generalized linear mixed model is more suitable than GLMs for 

modeling the response functions (Robinson et al., 2006). As in most previous research, Robinson et al. 

(2006) employ the “nominal is best” case in Taguchi’s philosophy to determine the optimal control factor 

settings by nonlinear programming. The mean and variance functions are expanded using first-order Taylor 

series approximation and the iterative marginal quasi-likelihood algorithm, rather than the second-order 

Taylor series approximation used by Lee and Nelder (2003) and Myers et al. (2005). Table 10 summarizes 

the modeling of the process mean and variance functions using GLMs as an extension of the SR model. 

In early attempts to integrate GLMs into RPD, Nelder and Lee (1991) modeled the mean and dispersion 

as functions of control variables with a Poisson response. In terms of joint modeling for the mean and dis-

persion, extended quasi-likelihood algorithms were used to estimate the parameters model with a 

four-step-iterative procedure. Instead of transforming the non-normal data and analyzing them by standard 

normal methods, Hamada and Nelder (1997) proved that GLMs can be used as a natural alternative for a 

variety of data with the same iterative strategy. Brinkley et al. (1996) combined GLMs with nonlinear pro-

gramming to obtain optimal solutions in a case study on circuit board quality improvement with Poisson 

quality characteristics, whereas Paul and Khuri (2000) used ridge analysis within the framework of GLMs 

to find the optimal operating conditions for the exponential family. Along the same lines, the GLM response 

functions were developed explicitly with the non-constant dispersion parameter  in log form by Engel 

(1992). In addition, three main components in GLMs, namely the location (fixed) effects, dispersion effects, 

and random effects, were jointly estimated as the parameters related to control, noise, and random factors 

using residual MLE with a general mixed model by Wolfinger and Tobias (1998). The consolidation of joint 

modeling for the mean and dispersion in GLMs and the four main advantages of the GLM approach in RPD 

were discussed by Nelder and Lee (1998). 

In another attempt to extend the GLM framework as a tool for solving RPD problems, Lee and Nelder 

(2003) considered the mean and dispersion as functions of both control and noise factors. The authors rep-

resented a broad framework of RPD approaches based on interpreting RSM, SNRs, and data transformation 

through the GLM structure to give joint GLMs for the mean and dispersion. The literature on GLMs is 

broadly covered by Myers and Montgomery (1997), Hamada and Nelder (1997), and Myers et al. (2002). 

An overview of the GLM approach used as an alternative modeling methodology in RPD is presented in 

Table 11.
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Table 10. Using GLMs as an extension of SR model
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Table 11. Overview of the GLM approach used in RPD modeling

4. RPD optimization models

The key purpose of the RPD optimization stage is to identify appropriate settings for the process design 

variables. Such settings are generally those that minimize the performance variability and the deviation 

from some nominal value of a quality characteristic of interest. The development of RPD optimization mod-

els and approaches can be classified into three important milestones. Originally, in the early stages of RPD, 

the two-step model of Taguchi was used to determine the nominal best case. In this approach, the control 

factors are classified into two main groups: (i) the variability control factors, which affect the variability 

and probably the mean of a process, and (ii) the target control factors, which only affect the mean of a 

process. To construct this optimization model, the variability control factor settings that maximize the SNRs 

must first be established. The mean response to the desired target value is then adjusted by changing the 

target control factors. The disadvantages of the two-step model lie in the orthogonal array and SNRs, as 

discussed in previous sections.

The second development stage of RPD optimization models originates from the DR model approach pro-

posed by Vining and Myers (1990), in which the estimated mean and variance functions are considered to 

achieve optimal solutions. The priority criterion is used in the optimization formula to keep the process 

mean at the customer-identified target value, while the estimated variance function is minimized. However, 

Del Castillo and Montgomery (1993) and Copeland and Nelson (1996) pointed out that the technique used 

by Vining and Myers (1990) to solve the RPD optimization problem may not always produce local optima, 

and that better RPD solutions could be achieved using standard nonlinear programming techniques such as 

the generalized reduced gradient method and the Nelder–Mead simplex method. Kim and Lin (1998) used 

fuzzy logic techniques to modify the DR model proposed by Vining and Myers (1990). The estimated mean 

and variance functions are considered simultaneously based on the member functions in fuzzy set theory. 

The fuzzy optimization model is based on the L¥ norm. Other extensions of the DR model include the pri-



62 J Korean Soc Qual Manag Vol. 46, No. 1: 039-074, March 2018

oritized models proposed by Kim and Cho (2002) and Tang and Xu (2002) based on the idea of goal 

programming. To specify the upper bound of the process bias and variance, Shin and Cho (2005, 2006) 

proposed bias-specified and variability-specified models by applying the e-constraint method to the proc-

ess bias and process variance, respectively.

In terms of optimization, the DR model may provide a considerably large variance in some cases, as the 

process variability is minimized while the process mean remains at the preferred value. According to the 

illustrated example in Lin and Tu (1995), the process variance can be reduced significantly when some 

slight deviation from the target value of the process mean is allowed. Hence, Lin and Tu (1995) proposed 

the mean square error (MSE) model to consider the process bias and process variability simultaneously in 

the RPD optimization problem. The MSE model proposed by Lin and Tu (1995) is another significant devel-

opment stage of RPD optimization models. Based on the MSE model, a number of extended approaches 

have been developed to consider the trade-off between the bias and variance. Steenackers and Guillaume 

(2008) combined the MSE model and the bias-specified model proposed by Shin and Cho (2005) to de-

termine the appropriate compromise solution. Cho et al. (1996) considered the basic idea of relative im-

portance between the process bias and process variance in the MSE model by suggesting a weighted sum 

model. Using the joint optimization of the mean and standard deviation functions, Koksoy and Doganaksoy 

(2003) provided a more flexible means by which decision makers can generate alternative solutions to the 

DR model and MSE model using the concept of a weighted sum. Along the same lines, Ding et al. (2004) 

utilized the convex combination of the estimated mean and variance functions to transform the multiple re-

sponse functions into a single objective function. Different weight values were assigned to two response 

functions to plot the Pareto frontiers and minimize the expected loss in the weighted sum model proposed 

by Ding et al. (2004). Other extensions of the MSE model include the generalized linear mixed models pro-

posed by Robinson et al. (2006) and the IP model proposed by Truong and Shin (2012), which used gener-

alized linear mixed models and the IP estimation method to estimate the mean and variance functions, 

respectively. To consider the bi-objective optimization of the process bias and process variance, Shin and 

Cho (2009) suggested a lexicographical weighted-Tchebycheff model consisting of the lexicographical or-

der technique and the assigned weighting method between them in terms of the L¥ norm.

To handle multiple-response quality characteristics optimization problems, several methods have been 

developed using the concept of RPD. The weighting criterion was used to consider the trade-off between 

multiple responses in the quadratic quality loss function proposed by Ames et al. (1997). The process mean 

and variance functions were not employed in this model. Based on the SR model approach, Romano et al. 

(2004) solved multiple-response optimization problems through the DR-based quality loss model with a 

constraint involving limits on the mean and variance of individual responses. Contrary to the quality loss 

function, the desirability approach is used to convert the multiple response functions to the same scale. 

Borror (1998) used the desirability function model with equal weight values assigned to the mean and var-

iance response surfaces to solve the single-response RPD optimization problem, whereas Fogliatto (2008) 

combined the desirability function approach with the Hausdorff distance technique to identify the response 

outcomes that are closest to a target profile. Additionally, the idea of constructing and solving RPD prob-
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lems with time-series and multiple responses has recently been considered. Nha et al. (2013) proposed a 

lexicographical dynamic goal programming model using the same-name approach to implement the 

time-series and multiple responses within the pharmaceutical environment. Goethals and Cho (2010) con-

sidered the time-oriented dynamic characteristics problem in terms of economics by integrating a cost 

mechanism and quality loss approach to a given process across a time profile. 

In addition to considering the trade-off between the mean and variance functions, the MSE model can be 

used as a criterion to compare multiple-response quality characteristics. In the weighted sum approach 

based on the MSE concept proposed Koksoy (2006) and Koksoy and Yalcinoz (2006), the weights are as-

signed to the individual MSE functions of each response. For this highly nonlinear or multimodal problem, 

Koksoy (2006) and Koksoy and Yalcinoz (2006) utilized the NIMBUS algorithm and a genetic algorithm 

based on arithmetic crossover, respectively, to solve the proposed formulation. Although the weighted sum 

method can generate efficient solutions for convex multi-objective problems, it cannot, in general, find all 

efficient points of non-convex problems (Tind and Wiecek, 1999). To overcome this drawback, Shin et al. 

(2011b) developed a lexicographical weighted-Tchebycheff method based on the MSE term to determine 

the efficient solutions of a non-convex Pareto frontier in RPD multiple-response optimization problems. 

However, the correlations between multiple responses are ignored in most formulations. In an attempt to 

consider the multiple correlated characteristics in the RPD principle, Govindaluri and Cho (2007) employed 

the Tchebycheff metric-based compromise programming method with the MSE of individual quality charac-

teristics consisting of the mean, standard deviation, and covariance functions. Gomes et al. (2013) identified 

the drawback of the method proposed by Govindaluri and Cho (2007) based on the computation of a co-

variance response surface, and developed weighted multivariate MSE model using principle component 

analysis to obtain the optimal solutions of multiple correlated responses presenting different degrees of 

importance. The different RPD optimization models reported in the literature are summarized in Table 12.
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Table 12. RPD optimization models and approaches 
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Table 13. Comparative results for Roman-style catapult study

5. Summary and conclusions

In this paper, the three main stages of robust design have been reviewed in terms of several important 

aspects. Various experimental formats have been discussed based on the use of control factors only or 

noise factors and control factors together. The remaining problems in the experimental formats correspond 

to the noise factors. The modeling the functional relationship between the responses and input factors, in-

cluding the DR model approach, the SR model approach, and GLMs with various estimation methods, have 

been discussed. The modeling of time-dependent and multiple responses covers a wide range of practical 

situations, and requires further exploration in future studies. In addition, this stage of RPD has been inves-

tigated more thoroughly because of the uncertainty and accuracy associated with existing modeling 

methods. The application of online RPD to deal with the noise factors is also an interesting future direction. 

In addition to the SR optimization models, many approaches have been proposed for multiple responses. 

The priority and weight criteria are often considered in the proposed optimization models. RPD optimization 

models have been widely studied. Further considerations could be given to the combination of the priority 

and weight between the bias and variance, or between multiple responses. 
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