• Title/Summary/Keyword: 강거더교의 강상판

Search Result 6, Processing Time 0.023 seconds

Evaluation of Effective Temperature for Estimate Design Thermal Loads in Steel Deck of Steel Box Girder Bridges (강상자형교의 강바닥판에서 설계온도하중을 위한 유효온도 산정)

  • Shin, Dong-Wook;Kim, Kyoung-Nam;Choi, Chul-Ho;Lee, Seong-Haeng
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.77-87
    • /
    • 2013
  • A present LSD (limited state design) code for temperature load in the domestic bridge design has applied a uniform standard for various bridge types. In this study, in order to calculate the effective temperature, a specimen of steel box girder bridge section with real size dimension was manufactured. For a year, the temperature data were measured at the 18 point in steel deck of steel box girder bridges specimen. Effective temperature within the cross section according to atmospheric temperature was calculated by this experiment data. The analyzed results were very similar correlation when compared with the effective temperature of the Euro Code. Therefore, the effective temperature which calculated based on the present data could be used as the basic data in order to present to the appropriate design criteria for the thermal loads on the domestic bridge design.

The Variety of Reaction at the Three Span Continuous Steel Box Girder Bridge under The Thermal Effect of Guss Asphalt (구스 아스팔트의 열 영향이 3경간 연속 강상판 박스 거더교의 반력에 미치는 영향)

  • 김성남;고윤기;한택희;강영종
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.195-202
    • /
    • 2004
  • After the 1990's, Guss asphalt has chosen in Korea for using in pavement of a steel deck bridge because of it's distinguish ability about water proof and so on. But on the other hand it may cause server stress and displacement on the bridge as it is treated using very high temperature ranging from 220℃ to 260℃. Therefore it is critical to estimate the thermal effect of Guss asphalt on the steel deck bridge before the width and pattern of the unit portion are decided to minimize impact. In this study, a serious of numerical tests of the some steel box bridges were idealized were conducted to verify the feasibility of numerical value analysis. The parametric study was performed to present design proposal about the Box section dimensions and the diaphragm spacing.

  • PDF

An Experimental Study on the Temperature Difference between the Top and Bottom Flange in Steel Girder without Concrete Slab (콘크리트 슬래브가 없는 강재주형에서 상하연 온도차에 대한 실측연구)

  • Shin, Dong-Wook;Kim, Kyoung-Nam;Jung, Kyoung-Sup;Lee, Seong-Haeng
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.99-106
    • /
    • 2014
  • In order to study the reasonable design thermal loads, the steel box girder bridge specimen which have no concrete slab was manufactured with the real size dimension. The temperature data were measured for 5 month at the 18 thermo gauges which were attached according to height. The temperature differences between the top and bottom flange in steel box girder specimen were calculated and the temperature gradient models were proposed by the probabilistic method. This proposed model showed a correlation of approximately 97% when compared with the similar model of Euro Code. Thus, the temperature gradient models which were suggested in this study may be used as the basis data in calculating the design load temperature.

Parametric Study on Steel composite Girder bridges for HONAM High-Speed Railway Considering Criteria Requirement of Dynamic Response (호남고속철도 동적 안정성 요구 조건을 고려한 강합성 거더교의 변수 연구)

  • Cho, Sun-Kyu;Jung, Han-Ouk;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1370-1378
    • /
    • 2007
  • High speed railway bridge is affected on safety of bridge by dynamic amplification effect, when dynamic response of bridge is equal to effect cycle load for rolling stock axle according to high speed operation train. And excessive deformation of structure has negative effect on operation safety of train and comfort of passenger due to fluctuation of wheel load by torsion of track etc. and decrease of contact force on vehicle wheel-rail. To ensure the safety of track and train operation safety, it is have to perform the study on resonance and deformation of structure. That criteria and requirement of railway bridge is limitation of vertical acceleration on deck for dynamic behavior of structure, contact of vehicle wheel and rail, limitation of face distortion and rotation angle of end deck, and limitation of vertical displacement by train. Unlike KYEONGBU High Speed Railway, New constructed HONAM High Speed Railway have to applied the new requirement for dynamic behavior safety according to change of condition which is type of ballast (slab ballast), interval of track, and actual rolling stock load. Therefore, in this paper, it was conformed the dynamic characteristic due to parameter, which related with above mentioned criteria, for steel composite bridges.

  • PDF

Optimum Life-Cycle Cost Design of Steel Bridges (강교의 생애주기비용 최적설계)

  • Cho, Hyo-Nam;Lee, Kwang-Min;Kim, Jung-Ho;Choi, Young-Min;Bong, Youn-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.341-358
    • /
    • 2003
  • This paper proposed a general formulation of Life-Cycle Cost (LCC) models and LCC effective design system models of steel bridges suitable for practical implementation. An LCC model for the optimum design of steel bridges included initial cost and direct/indirect rehabilitation costs of a steel bridge as well as repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socioeconomic losses. The new road user cost model and regional socioeconomic losses model were especially considered because of the traffic network. Illustrative design examples of an actual steel box girder and an orthotropic steel deck bridge were discussed to demonstrate the LCC effectiveness of the design of steel bridges. Based on the results of the numerical investigation, the LCC-effective optimum design of steel bridges based on the proposed LCC model was found to lead to a more rational, economical, and safer design compared with the initial cost-optimum design and the conventional code-based design.

Analysis Models for Automatic Design of Orthotropic Steel Deck Bridges (자동화설계를 위한 강상판교의 해석모델)

  • Cho, Hyo Nam;Chung, Jee Seung;Min, Dae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.363-372
    • /
    • 1999
  • This study proposes useful analysis models for automatic design of orthotropic steel deck bridges. For the selection of the best or the most proper analysis model this paper presents various analysis models based on grillage model, which are then compared with each other in terms of reliability of analysis, computing time and effectiveness. Also the selected analysis models are compared with Pelikan-Esslinger method well-known for orthotropic steel deck bridge analysis. The effectiveness of proposed analysis models is demonstrated by means of a numerical example that is a three-span continuous (60m+80m+60m=200m) orthotropic steel-box girder bridge.

  • PDF