• Title/Summary/Keyword: 감정 마이닝

Search Result 85, Processing Time 0.023 seconds

The Blog Polarity Classification Technique using Opinion Mining (오피니언 마이닝을 활용한 블로그의 극성 분류 기법)

  • Lee, Jong-Hyuk;Lee, Won-Sang;Park, Jea-Won;Choi, Jae-Hyun
    • Journal of Digital Contents Society
    • /
    • v.15 no.4
    • /
    • pp.559-568
    • /
    • 2014
  • Previous polarity classification using sentiment analysis utilizes a sentence rule by product reviews based rating points. It is difficult to be applied to blogs which have not rating of product reviews and is possible to fabricate product reviews by comment part-timers and managers who use web site so it is not easy to understand a product and store reviews which are reliability. Considering to these problems, if we analyze blogs which have personal and frank opinions and classify polarity, it is possible to understand rightly opinions for the product, store. This paper suggests that we extract high frequency vocabularies in blogs by several domains and choose topic words. Then we apply a technique of sentiment analysis and classify polarity about contents of blogs. To evaluate performances of sentiment analysis, we utilize the measurement index that use Precision, Recall, F-Score in an information retrieval field. In a result of evaluation, using suggested sentiment analysis is the better performances to classify polarity than previous techniques of using the sentence rule based product reviews.

Sentiment Analysis and Opinion Mining: literature analysis during 2007-2016 (감정분석과 오피니언 마이닝: 2007-2016)

  • Li, Jiapei;Li, Xiaomeng;Xiam, Xiam;Kang, Sun-kyung;Lee, Hyun Chang;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.160-161
    • /
    • 2017
  • Sentiment analysis and opinion mining is the field of study that analyzes people's opinions, sentiments, evaluations, attitudes, and emotions from written language Opinion mining and sentiment analysis(OMSA) as a research discipline has emerged during last 15 years and provides a methodology to computationally process the unstructured data mainly to extract opinions and identify their sentiments. The relatively new but fast growing research discipline has changed a lot during these years. This paper presents a scientometric analysis of research work done on OMSA during 2007-2016. For the literature analysis, research publications indexed in Web of Science (WoS) database are used as input data. The publication data is analyzed computationally to identify year-wise publication pattern, rate of growth of publications, research areas. More detailed manual analysis of the data is also performed to identify popular approaches (machine learning and lexcon-based) used in these publications, levels (documents, sentences or aspect-level) of sentiment analysis work done and major application areass of OMSA.

  • PDF

Sentiment Classification Using Feature Reweighting (자질 가중치의 재조정을 통한 감정 분류)

  • Seo, Hyung-Won;Kim, Hyung-Chul;Kim, Jae-Hoon;Lee, Kong-Joo
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.145-150
    • /
    • 2009
  • 이 논문은 한글 뉴스 기사의 댓글에 대한 감정 분류 방법을 제안한다. 제안된 방법은 기계학습을 이용하는데 본 논문에서는 자질의 가중치를 재조정하는 좀 색다른 방법을 제안한다. 일반적으로 댓글은 독자들이 특정 기사에 대해서 어떠한 감정을 가지고 있는지를 파악하는 중요한 단서가 된다. 그런데 독자들의 감정은 가사에 어떤 분야에 속하느냐에 영향을 받는다. 예를 들면 정치 기사는 부정적인 댓글은 많이 포함하고 있으며 인물 기사는 긍정적인 기사를 많이 포함한다. 이 논문은 이와 같은 댓글의 속성을 이용해서 기사의 원문과 기사의 분야 정보를 이용하여 가중치를 조정한다. 제안된 시스템의 성능을 평가하기 위해 신문 기사와 댓글을 수집하여 감정 말뭉치를 구축하였으며 감정자질을 추출하기 위해 감정 사전을 구축하였다. 제안된 시스템의 $F_1$ 척도는 92.2%였으며 원문의 감정 단어와 분야 정보가 댓글의 감정을 분류하는데 중요한 자질임을 알 수 있었다.

  • PDF

Personal Sentiment Analysis and Opinion Mining (개인감정분석과 마이닝)

  • Lee, Hyun Chang;Shin, Seong Yoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.344-345
    • /
    • 2017
  • Opinion mining and sentiment analysis(OMSA) as a research discipline has emerged during last 15 years and provides a methodology to computationally process the unstructured data mainly to extract opinions and identify their sentiments. The relatively new but fast growing research discipline has changed a lot during these years. This paper presents a scientometric analysis of research work done on OMSA during 2007-2016. For the literature analysis, research publications indexed in Web of Science (WoS) database are used as input data. The publication data is analyzed computationally to identify year-wise publication pattern, rate of growth of publications, research areas.

  • PDF

Empirical Sentiment Classification Using Psychological Emotions and Social Web Data (심리학적 감정과 소셜 웹 자료를 이용한 감성의 실증적 분류)

  • Chang, Moon-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.563-569
    • /
    • 2012
  • The studies of opinion mining or sentiment analysis have been the focus with social web proliferation. Sentiment analysis requires sentiment resources to decide its polarity. In the existing sentiment analysis, they have been built resources designed with intensity of sentiment polarity and decided polarity of opinion using the ones. In this paper, I will present sentiment categories for not only polarity of opinion but also the basis of positive/negative opinion. I will define psychological emotions to primary sentiments for the reasonable classification. And I will extract the informations of sentiment from social web texts for the actual distribution of sentiments in social web. Re-classifying primary sentiments based on extracted sentiment information, I will organize sentiment categories for the social web. In this paper, I will present 23 categories of sentiment by using proposed method.

An Efficient Search Method of Product Reviews using Opinion Mining Techniques (오피니언 마이닝 기술을 이용한 효율적 상품평 검색 기법)

  • Yune, Hong-June;Kim, Han-Joon;Chang, Jae-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.2
    • /
    • pp.222-226
    • /
    • 2010
  • With the continuously increasing volume of e-commerce transactions, it is now popular to buy some products and to evaluate them on the World Wide Web. The product reviews are very useful to customers because they can make better decisions based on the indirect experiences obtainable through these reviews. However, since online shopping malls do not provide ranking results, it is not easy for users to read all the relevant review documents effectively. Product reviews include subjective and emotional opinions. Thus, the review search is different from the general web search in terms of ranking strategy. In this paper, we propose an effective method of ranking the reviews that can reflect user's intention by using opinion mining techniques. The proposed method analyzes product reviews with query words, and sentimental polarity of subjective opinions. Through diverse experiments, we show that our proposed method outperforms conventional ones.

Comparison and Analysis of Domestic and Foreign Sports Brands Using Text Mining and Opinion Mining Analysis (텍스트 마이닝과 오피니언 마이닝 분석을 활용한 국내외 스포츠용품 브랜드 비교·분석 연구)

  • Kim, Jae-Hwan;Lee, Jae-Moon
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.6
    • /
    • pp.217-234
    • /
    • 2018
  • In this study, big data analysis was conducted for domestic and international sports goods brands. Text Mining, TF-IDF, Opinion Mining, interestity graph were conducted through the social matrix program Textom and the fashion data analysis platform MISP. In order to examine the recent recognition of sports brands, the period of study is limited to 1 year from January 1, 2017 to December 31, 2017. As a result of analysis, first, we could confirm the products representing each brand. Second, I could confirm the marketing that represents each brand. Third, the common words extracted from each brand were identified. Fourth, the emotions of positive and negative of each brand were confirmed.

Sentimental Analysis Research Trends (감성분석 연구 동향)

  • Lee, Jung-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.358-361
    • /
    • 2018
  • 비정형 데이터 증가로 텍스트 마이닝을 사용해 데이터를 분석하는 연구가 주목받고 있다. 감성분석은 단어와 문맥을 분석하여 텍스트의 감정을 파악하는 기술이다. 본 논문에서는 감성분석 연구 동향, 적용분야, 방법론에 관해 분석하고 기술하려 한다. 감성분석은 2001년 채팅의 감정을 분석하면서 시작되었고, 2008년부터 본격적으로 연구가 진행되었다. 감성분석은 SNS, 상품 후기, 영화평, 뉴스 기사 등 다양한 데이터에 적용되고 있으며, 사회이슈 찬반 분석과 장소 선호도 분석 등 다양한 연구에서 사용되었다. 감성분석 방법은 감성사전을 이용하는 방식과 기계학습을 사용하는 방식으로 나누어지며 분석 방법을 발전시키기 위한 연구가 진행되고 있다.

The Hangul Tweet Sentiment Analysis System using Opinion Mining (오피니언 마이닝을 이용한 한글 트윗 감정분석 시스템)

  • Eo, Mun-Seon;Park, Doo-Soon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1145-1146
    • /
    • 2013
  • 인터넷과 스마트폰의 발달로 SNS서비스의 사용자와 데이터가 활발하게 증가하고 있다. 이로 인하여 SNS 데이터의 가치와 신뢰성이 점점 증가하고 있으며, 이러한 추세에 따라 여러 연구와 실험을 통하여 데이터를 분석하고 분석 결과를 제공하는 서비스가 증가하고 있다. 본 논문에서는 이러한 배경을 바탕으로 특정 키워드를 포함하고 있는 한글 트윗을 검색하여 해당 트윗에 대한 연관 키워드와 감정 키워드를 분석해서 출력해주는 시스템을 개발한다.

Emotion Prediction of Document using Paragraph Analysis (문단 분석을 통한 문서 내의 감정 예측)

  • Kim, Jinsu
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.249-255
    • /
    • 2014
  • Recently, creation and sharing of information make progress actively through the SNS(Social Network Service) such as twitter, facebook and so on. It is necessary to extract the knowledge from aggregated information and data mining is one of the knowledge based approach. Especially, emotion analysis is a recent subdiscipline of text classification, which is concerned with massive collective intelligence from an opinion, policy, propensity and sentiment. In this paper, We propose the emotion prediction method, which extracts the significant key words and related key words from SNS paragraph, then predicts the emotion using these extracted emotion features.