• Title/Summary/Keyword: 감쇠.산란 보정

Search Result 30, Processing Time 0.027 seconds

Effect of Attenuation Correction, Scatter Correction and Resolution Recovery on Diagnostic Performance of Quantitative Myocardial SPECT for Coronary Artery Disease (감쇠보정, 산란보정 및 해상도복원이 정량적 심근 SPECT의 관상동맥질환 진단성능에 미치는 효과)

  • Hwang, Kyung-Hoon;Lee, Dong-Soo;Paeng, Jin-Chul;Lee, Myoung-Mook;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.5
    • /
    • pp.288-297
    • /
    • 2002
  • Purpose: Soft tissue attenuation and scattering are major methodological limitations of myocardial perfusion SPECT. To overcome these limitations, algorithms for attenuation, scatter correction and resolution recovery (ASCRR) is being developed, while quantitative myocardial SPECT has also become available. In this study, we investigated the efficacy of an ASCRR-corrected quantitative myocardial SPECT method for the diagnosis of coronary artery disease (CAD). Materials and Methods: Seventy-five patients (M:F=51:24, $61.0{\pm}8.9$ years old) suspected of CAD who underwent coronary angiography (CAG) within $7{\pm}12$ days of SPECT(Group-I) and 20 subjects (M:F=10:10, age $40.6{\pm}9.4$) with a low likelihood of coronary artery disease (Group-II) were enrolled. Tl-201 rest/ dipyridamole-stress Tc-99m-MIBI gated myocardial SPECT was performed. ASCRR correction was peformed using a Gd-153 line source and automatic software (Vantage-Pro; ADAC Labs, USA). Using a 20-segment model, segmental perfusion was automatically quantified on both the ASCRR-corrected and uncorrected images using an automatic quantifying software (AutoQUANT; ADAC Labs.). Using these quantified values, CAD was diagnosed in each of the 3 coronary arterial territories. The diagnostic performance of ASCRR-corrected SPECT was compared with that of non-corrected SPECT. Results: Among the 75 patients of Group-I, 9 patients had normal CAG while the remaining 66 patients had 155 arterial lesions; 61 left anterior descending (LAD), 48 left circumflex (LCX) and 46 right coronary (RCA) arterial lesions. For the LAD and LCX lesions, there was no significant difference in diagnostic performance. In Group-II patients, the overall normalcy rate improved but this improvement was not statistically significant (p=0.07). However, for RCA lesions, specificity improved significantly but sensitivity worsened significantly with ASCRR correction (both p<0.05). Overall accuracy was the same. Conclusion: The ASCRR correction did not improve diagnostic performance significantly although the diagnostic specificity for RCA lesions improved on quantitative myocardial SPECT. The clinical application of the ASC-RR correction requires more discretion regarding cost and efficacy.

Ultrasonic Scatter and Compensation of Interfacial Crack due to Thickness Variation of Dissimilar Bonded Components (이종 접합부재의 두께 변화에 따른 계면균열의 초음파 산란 보정)

  • Park, Sung-Il;Chung, Nam-Yong;Jin, Yoon-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.25-30
    • /
    • 2004
  • In this paper, the compensation of interfacial scatter due to adhesive layer and adherend thickness ratio variation was applied to improve measuring precision by calculating ultrasonic attenuation coefficient in the Al/Epoxy dissimilar bonded components. The optimum condition of theoretical value and experimental measuring accuracy by the ultrasonic method in the Al/Epoxy dissimilar bonded components have been investigated. From the experimental results, we proposed a measurement method of the interfacial crack lengths by the ultrasonic attenuation coefficient and discussed it.

  • PDF

Study of Imaging of Submarine Bubble Plume with Reverse Time Migration (역시간 구조보정을 활용한 해저 기포플룸 영상화 연구)

  • Dawoon Lee;Wookeen Chung;Won-Ki Kim;Ho Seuk Bae
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.1
    • /
    • pp.8-17
    • /
    • 2023
  • Various sources, such as wind, waves, ships, and gas leaks from the seafloor, forms bubbles in the ocean. Underwater bubbles cause signal scattering, considerably affecting acoustic measurements. This characteristic of bubbles is used to block underwater noise by attenuating the intensity of the propagated signal. Recently, researchers have been studying the large-scale release of methane gas as bubble plumes from the seabed. Understanding the physical properties and distribution of bubble plumes is crucial for studying the relation between leaked methane gas and climate change. Therefore, a water tank experiment was conducted to estimate the distribution of bubble plumes using seismic imaging techniques and acoustic signals obtained from artificially generated bubbles using a bubble generator. Reverse time migration was applied to image the bubble plumes while the acquired acoustic envelope signal was used to effectively estimate bubble distribution. Imaging results were compared with optical camera images to verify the estimated bubble distribution. The water tank experiment confirmed that the proposed system could successfully image the distribution of bubble plumes using reverse time migration and the envelope signal. The experiment showed that the scattering signal of artificial bubble plumes can be used for seismic imaging.

Implementation of Filter for the Removal of Partial Volume Effect (부분용적효과 제거를 위한 Filter 구현)

  • Park, Minju;Lee, Sangbock
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.3
    • /
    • pp.139-145
    • /
    • 2015
  • When examining a patient using SPECT, gamma rays emitted from the body decrease or scatter. And when they reach the detector they spread in accordance with physical characteristics and geometric shapes of the scanner, quantitative analysis was difficult. For exact quantitative analysis of gamma rays emitted from the body, so that they must be considered to correction about PVE(partial volume effect). In this paper, sinogram filter was implemented to solve comprehensive PVE of SPECT. According to the results in which implemented filter was applied, partial volume effect caused by SPECT was removed. To compare proposed method and conventional method, PSNR(Peak Signal to Noise Ratio) was executed. As a result, proposed method was indicated as 7dB, conventional method was indicated as 14db respectively. dB(decibel) level of the proposed methods is lower, since the MSE(mean square error) becomes greater because scattered ray was removed, PSNR value is low. Therefore, by applying the proposed method for removing the PVE of SPECT imaging method, the image quality is improved.

The Dose Characteristics of Designed Ir-192 Micro-source for Brachytherapy (근접조사용 Ir-192 마이크로선원의 디자인과 선량 특성)

  • 최태진;김진희
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.81-89
    • /
    • 2003
  • The dose distributions of designed Ir-192 micro-source were investigated by dose computations which were accomplished by employing shape of encapsule material and thickness of the source for self-absorption. The computation dose derived from air-kerma rate (S$_{k}$ ) and dose rate constant (Λ) includes the anisotropy of dose distribution around the source. We got the dose rate constants in a water medium is 1.154 cGy h$^{-1}$ U$^{-1}$ . The size of the source was 0.5 mm in diameter and 3.5 mm in length and it was encapsuled in 1.1 mm$\Phi$${\times}$5.5 mm of stainless steel sealed with 0.3 mm of filter thickness. The tissue dose of reference point at 1.0 cm radial distance of the source axis was delivered 1.154 Uh$^{-1}$ (1.3167${\times}$10$^{-3}$ cGy/mCi-sec) from the S$_{k}$ 4.108U/mCi of Ir-192 source. The filtration effect contributed to air-kerma strength as exponential filtering effect of 86.2% in total attenuation, but self-absorption was 88.4% from radial dose distributions. In particular, the dose attenuations showed a rapid anisotropic distributions as 56% of reference dose along to $\pm$10 degrees from the tip of source axis and 50% for of that to source-cable direction. We persist in use the large diameter of applicator will avoid the dose anisotropy by the filtered attenuation effects along the axis of Ir-192 micro-source.

  • PDF

Usefulness Evaluation of Artifacts by Bone Cement of Percutaneous Vertebroplasty Performed Patients and CT Correction Method in Spine SPECT/CT Examinations (척추 뼈 SPECT/CT검사에서 경피적 척추성형술 시행 환자의 골 시멘트로 인한 인공물과 CT보정방법의 유용성 평가)

  • Kim, Ji-Hyeon;Park, Hoon-Hee;Lee, Juyoung;Nam-Kung, Sik;Son, Hyeon-Soo;Park, Sang-Ryoon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.49-61
    • /
    • 2014
  • Purpose: With the aging of the population, the attack rate of osteoporotic vertebral compression fracture is in the increasing trend, and percutaneous vertebroplasty (PVP) is the most commonly performed standardized treatment. Although there is a research report of the excellence of usefulness of the SPECT/CT examination in terns of the exact diagnosis before and after the procedure, the bone cement material used in the procedure influences the image quality by forming an artifact in the CT image. Therefore, the objective of the research lies on evaluating the effect the bone cement gives to a SPECT/CT image. Materials and Methods: The images were acquired by inserting a model cement to each cylinder, after setting the background (3.6 kBq/mL), hot cylinder (29.6 kBq/mL) and cold cylinder (water) to the NEMA-1994 phantom. It was reconstructed with Astonish (Iterative: 4 Subset: 16), and non attenuation correction (NAC), attenuation correction (AC+SC-) and attenuation and scatter correction (AC+SC+) were used for the CT correction method. The mean count by each correction method and the count change ratio by the existence of the cement material were compared and the contrast recovery coefficient (CRC) was obtained. Additionally, the bone/soft tissue ratio (B/S ratio) was obtained after measuring the mean count of the 4 places including the soft tissue(spine erector muscle) after dividing the vertebral body into fracture region, normal region and cement by selecting the 20 patients those have performed PVP from the 107 patients diagnosed of compression fracture. Results: The mean count by the existence of a cement material showed the rate of increase of 12.4%, 6.5%, 1.5% at the hot cylinder of the phantom by NAC, AC+SC- and AC+SC+ when cement existed, 75.2%, 85.4%, 102.9% at the cold cylinder, 13.6%, 18.2%, 9.1% at the background, 33.1%, 41.4%, 63.5% at the fracture region of the clinical image, 53.1%, 61.6%, 67.7% at the normal region and 10.0%, 4.7%, 3.6% at the soft tissue. Meanwhile, a relative count reduction could be verified at the cement adjacent part at the inside of the cylinder, and the phantom image on the lesion and the count increase ratio of the clinical image showed a contrary phase. CRC implying the contrast ratio and B/S ratio was improved in the order of NAC, AC+SC-, AC+SC+, and was constant without a big change in the cold cylinder of the phantom. AC+SC- for the quantitative count, and AC+SC+ for the contrast ratio was analyzed to be the highest. Conclusion: It is considered to be useful in a clinical diagnosis if the application of AC+SC+ that improves the contrast ratio is combined, as it increases the noise count of the soft tissue and the scatter region as well along with the effect of the bone cement in contrast to the fact that the use of AC+SC- in the spine SPECT/CT examination of a PVP performed patient drastically increases the image count and enables a high density of image of the lesion(fracture).

  • PDF

Dose modeling and its Application of Ir-192 for substitution of Ralstron Brachytherapy source (Ralstron 선원대체형 Iridium-192 선원의 선량모델링과 응용)

  • 김옥배;최태진;김진희;이호준;박정호;김성규;조운갑;한현수
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.131-139
    • /
    • 2000
  • We designed high dose rate Ir-192 source which was prepared for substitute the Co-60 source in Ralstron unit (Simatsu, Japan) which is supplied for cervical cancer treatment. The source dimension is 1.5 mm in a diameter and 1.5mm thickness of cylinder and encapsulated with 3 mm diameter of stainless steel(SUS316L) to substituted for the Co-60 source size. The Ir-192 source was prepared the dose model for tissue dose computation through the experimental determination of apparent activity and applied the empirical tissue correction factors extended to 20cm distance. The tissue dose model was applied the 4.69 R/cm-mCi-hr gamma constant and the ratio of energy absorption coefficient of water to that of air showed 1.112 include filteration of the self-absorptions. In this experiments, we prepared the dose computation software to clinical usefulness.

  • PDF

The Evaluation of Quantitative Accuracy According to Detection Distance in SPECT/CT Applied to Collimator Detector Response(CDR) Recovery (Collimator Detector Response(CDR) 회복이 적용된 SPECT/CT에서 검출거리에 따른 정량적 정확성 평가)

  • Kim, Ji-Hyeon;Son, Hyeon-Soo;Lee, Juyoung;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.2
    • /
    • pp.55-64
    • /
    • 2017
  • Purpose Recently, with the spread of SPECT/CT, various image correction methods can be applied quickly and accurately, which enabled us to expect quantitative accuracy as well as image quality improvement. Among them, the Collimator Detector Response(CDR) recovery is a correction method aiming at resolution recovery by compensating the blurring effect generated from the distance between the detector and the object. The purpose of this study is to find out quantitative change depending on the change in detection distance in SPECT/CT images with CDR recovery applied. Materials and Methods In order to find out the error of acquisition count depending on the change of detection distance, we set the detection distance according to the obit type as X, Y axis radius 30cm for circular, X, Y axis radius 21cm, 10cm for non-circular and non-circular auto(=auto body contouring, ABC_spacing limit 1cm) and applied reconstruction methods by dividing them into Astonish(3D-OSEM with CDR recovery) and OSEM(w/o CDR recovery) to find out the difference in activity recovery depending on the use of CDR recovery. At this time, attenuation correction, scatter correction, and decay correction were applied to all images. For the quantitative evaluation, calibration scan(cylindrical phantom, $^{99m}TcO_4$ 123.3 MBq, water 9293 ml) was obtained for the purpose of calculating the calibration factor(CF). For the phantom scan, a 50 cc syringe was filled with 31 ml of water and a phantom image was obtained by setting $^{99m}TcO_4$ 123.3 MBq. We set the VOI(volume of interest) in the entire volume of the syringe in the phantom image to measure total counts for each condition and obtained the error of the measured value against true value set by setting CF to check the quantitative accuracy according to the correction. Results The calculated CF was 154.28 (Bq/ml/cps/ml) and the measured values against true values in each conditional image were analyzed to be circular 87.5%, non-circular 90.1%, ABC 91.3% and circular 93.6%, non-circular 93.6%, ABC 93.9% in OSEM and Astonish, respectively. The closer the detection distance, the higher the accuracy of OSEM, and Astonish showed almost similar values regardless of distance. The error was the largest in the OSEM circular(-13.5%) and the smallest in the Astonish ABC(-6.1%). Conclusion SPECT/CT images showed that when the distance compensation is made through the application of CDR recovery, the detection distance shows almost the same quantitative accuracy as the proximity detection even under the distant condition, and accurate correction is possible without being affected by the change in detection distance.

  • PDF

Development of Dose Planning System for Brachytherapy with High Dose Rate Using Ir-192 Source (고선량률 강내조사선원을 이용한 근접조사선량계획전산화 개발)

  • Choi Tae Jin;Yei Ji Won;Kim Jin Hee;Kim OK;Lee Ho Joon;Han Hyun Soo
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.283-293
    • /
    • 2002
  • Purpose : A PC based brachytherapy planning system was developed to display dose distributions on simulation images by 2D isodose curve including the dose profiles, dose-volume histogram and 30 dose distributions. Materials and Methods : Brachytherapy dose planning software was developed especially for the Ir-192 source, which had been developed by KAERI as a substitute for the Co-60 source. The dose computation was achieved by searching for a pre-computed dose matrix which was tabulated as a function of radial and axial distance from a source. In the computation process, the effects of the tissue scattering correction factor and anisotropic dose distributions were included. The computed dose distributions were displayed in 2D film image including the profile dose, 3D isodose curves with wire frame forms and dosevolume histogram. Results : The brachytherapy dose plan was initiated by obtaining source positions on the principal plane of the source axis. The dose distributions in tissue were computed on a $200\times200\;(mm^2)$ plane on which the source axis was located at the center of the plane. The point doses along the longitudinal axis of the source were $4.5\~9.0\%$ smaller than those on the radial axis of the plane, due to the anisotropy created by the cylindrical shape of the source. When compared to manual calculation, the point doses showed $1\~5\%$ discrepancies from the benchmarking plan. The 2D dose distributions of different planes were matched to the same administered isodose level in order to analyze the shape of the optimized dose level. The accumulated dose-volume histogram, displayed as a function of the percentage volume of administered minimum dose level, was used to guide the volume analysis. Conclusion : This study evaluated the developed computerized dose planning system of brachytherapy. The dose distribution was displayed on the coronal, sagittal and axial planes with the dose histogram. The accumulated DVH and 3D dose distributions provided by the developed system may be useful tools for dose analysis in comparison with orthogonal dose planning.

List-event Data Resampling for Quantitative Improvement of PET Image (PET 영상의 정량적 개선을 위한 리스트-이벤트 데이터 재추출)

  • Woo, Sang-Keun;Ju, Jung Woo;Kim, Ji Min;Kang, Joo Hyun;Lim, Sang Moo;Kim, Kyeong Min
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.309-316
    • /
    • 2012
  • Multimodal-imaging technique has been rapidly developed for improvement of diagnosis and evaluation of therapeutic effects. In despite of integrated hardware, registration accuracy was decreased due to a discrepancy between multimodal image and insufficiency of count in accordance with different acquisition method of each modality. The purpose of this study was to improve the PET image by event data resampling through analysis of data format, noise and statistical properties of small animal PET list data. Inveon PET listmode data was acquired as static data for 10 min after 60 min of 37 MBq/0.1 ml $^{18}F$-FDG injection via tail vein. Listmode data format was consist of packet containing 48 bit in which divided 8 bit header and 40 bit payload space. Realigned sinogram was generated from resampled event data of original listmode by using adjustment of LOR location, simple event magnification and nonparametric bootstrap. Sinogram was reconstructed for imaging using OSEM 2D algorithm with 16 subset and 4 iterations. Prompt coincidence was 13,940,707 count measured from PET data header and 13,936,687 count measured from analysis of list-event data. In simple event magnification of PET data, maximum was improved from 1.336 to 1.743, but noise was also increased. Resampling efficiency of PET data was assessed from de-noised and improved image by shift operation of payload value of sequential packet. Bootstrap resampling technique provides the PET image which noise and statistical properties was improved. List-event data resampling method would be aid to improve registration accuracy and early diagnosis efficiency.