• Title/Summary/Keyword: 감마방사선

Search Result 992, Processing Time 0.025 seconds

Surface Dose Evaluation According to the Environment Around the Patient after Nuclear Medicine Examination (핵의학 검사 후 환자의 주위 환경에 따른 표면 선량 평가)

  • Lee, Young-Hee;Park, Jae-Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.943-948
    • /
    • 2021
  • The purpose of this study was to investigate changes in surface dose due to increased scattering of gamma rays from patients injected with 99mTc and 18F, which are radioactive isotopes, in close contact with materials with high atomic number such as the walls of the stable room. Prepare 99mTc and 18F by injecting 20 and 10 mCi respectively into the NEMA phantom, and then measuring the surface dose for 60 minutes by positioning the phantom at a height of 1 m above the surface, at a distance of 0, 5 and 10 cm from the wall, and at the same location as the phantom facing the wall. Each experiment was repeated five times for reproducibility of the experiment and one way analysis of variability (ANOVA) was performed for significance testing and Tukey was used as a post-test. The study found that surface doses of 220.268, 287.121, 243.957, and 226.272 mGy were measured at 99mTc, respectively, in the case of empty space and in the case of 0, 5 and 10 cm, while those of 18F were measured at 637.111, 724.469, 657.107, and 640.365 mGy, respectively. In order to reduce changes in surface dose depending on the patient's location while waiting, it is necessary to keep the distance from the ground or the wall where the patient is closely adhered to, or install an air mattress, etc., to prevent the scattered lines as much as possible, considering the scattered lines due to the wall etc. in future setup of the patient waiting room and safety room, and in addition to the examination, the external skin width may be reduced.

Studies on the Relationship between Radiosensitivity and Mutation Induction in Soybean (대두의 방사선감수성과 돌연변이 출현양상에 관한 연구)

  • Kwon, S.H.;Won, J.L.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.4
    • /
    • pp.318-323
    • /
    • 1981
  • This study was conducted to establish an effective radiation treatment and selection method for induced mutants in M_1 population of soybean treated with gamma-ray. About 64% of total M_1 plants was reduced in plant height up to 50 - 60% and among which 60 - 70% of the plants were contained mutations in M_2 generation. About 60% of the MI plants have born 6 - 15 seeds per plant and 50 - 60% of their progenies produced mutants in M_2 generation. Positive correlation between plant height and number of seeds per plant in M_1 population was found. Higher visible macro-mutation rate in M_2 was observed in the groups of reduced plant height and seed number in the M_1 generation, whereas the frequency of chlorophyll mutation was increased in the group of less damaged plants. The size of mutation sector was increased with reduction in number of seeds per M_1 plant and the mutants were occurred at random in all the parts of M_1 plants. For the effective selection of mutants in soybean mutation breeding, the M_1 seeds should be harvested from the radiation damaged M_1 plants with the application of higher doses of mutagens, and handling M_2 generation by bulk population method is recommendable.

  • PDF

Development of an Efficiency Calibration Model Optimization Method for Improving In-Situ Gamma-Ray Measurement for Non-Standard NORM Residues (비정형 공정부산물 In-Situ 감마선 측정 정확도 향상을 위한 효율교정 모델 최적화 방법 개발)

  • WooCheol Choi;Tae-Hoon Jeon;Jung-Ho Song;KwangPyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.471-479
    • /
    • 2023
  • In In-situ radioactivity measurement techniques, efficiency calibration models use predefined models to simulate a sample's geometry and radioactivity distribution. However, simplified efficiency calibration models lead to uncertainties in the efficiency curves, which in turn affect the radioactivity concentration results. This study aims to develop an efficiency calibration optimization methodology to improve the accuracy of in-situ gamma radiation measurements for byproducts from industrial facilities. To accomplish the objective, a drive mechanism for rotational measurement of an byproduct simulator and a sample was constructed. Using ISOCS, an efficiency calibration model of the designed object was generated. Then, the sensitivity analysis of the efficiency calibration model was performed, and the efficiency curve of the efficiency calibration model was optimized using the sensitivity analysis results. Finally, the radiation concentration of the simulated subject was estimated, compared, and evaluated with the designed certification value. For the sensitivity assessment of the influencing factors of the efficiency calibration model, the ISOCS Uncertainty Estimator was used for the horizontal and vertical size and density of the measured object. The standard deviation of the measurement efficiency as a function of the longitudinal size and density of the efficiency calibration model decreased with increasing energy region. When using the optimized efficiency calibration model, the measurement efficiency using IUE was improved compared to the measurement efficiency using ISOCS at the energy of 228Ac (911 keV) for the nuclide under analysis. Using the ISOCS efficiency calibration method, the difference between the measured radiation concentration and the design value for each simulated subject measurement direction was 4.1% (1% to 10%) on average. The difference between the estimated radioactivity concentration and the design value was 3.6% (1~8%) on average when using the ISOCS IUE efficiency calibration method, which was closer to the design value than the efficiency calibration method using ISOCS. In other words, the estimated radioactivity concentration using the optimized efficiency curve was similar to the designed radioactivity concentration. The results of this study can be utilized as the main basis for the development of regulatory technologies for the treatment and disposal of waste generated during the operation, maintenance, and facility replacement of domestic byproduct generation facilities.

In-Situ Gamma Spectrometry Research Analysis and Radiation Efficiency Sensitivity Evaluation (감마핵종 In-Situ 측정 연구 동향 분석 및 방사능 측정 효율 민감도 평가)

  • Hyun Jun Na;Hyeok Jae Kim;Seong Yeon Lee;Min Woo Kwak;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Since a large amount of radioactive waste is expected to be generated due to permanent shutdown of many nuclear power plants, it is necessary to prepare efficient management methods for radioactive waste. Therefore, there is a need for a based study to apply the In-Situ gamma spectrometry, which can simplify the measurement procedure. The purpose of this study is to analyze research cases of In-Situ gamma spectrometry and to analyze the sensitivity of measurement according to influencing factors on In-Situ gamma spectrometry. Research cases of five institutions, including the CERN and the Imperial College Reactor Centre (ICRC), were selected as the institutions to be investigated. Research on the In-Situ gamma spectrometry was conducted on the satisfaction of the acceptance criteria for radioactive waste and the analysis of residual radioactivity in the site. In-Situ Objective Counting System (ISOCS) was used as a major measuring device. Sampling and computer code were used to verify the analysis results. For evaluation of measuring sensitivity according to influencing factors on In-Situ gamma spectrometry, the thickness of the measurement target, the distance between the detector and the target, the angle of the collimator, and the contamination location were performed using ISOCS's Geometry Composer. In every case, based on 122 keV, the efficiency decreased as the energy increased in the high energy region, and the efficiency decreased as the energy decreased in the low energy region. As the target thickness increased, the efficiency decreased, and as the distance between target and detector increased, the efficiency decreased. As the distance between contamination and detector increased, the efficiency decreased, and as the angle of the collimator increased, the measurement efficiency increased. However, when simulating the measurement situation using Geometry Composer, the background is not considered, and the probability of incident in the background increases as the angle increases, so further research needs to be conducted in consideration of these. This study can be utilized when applying the In-Situ gamma spectrometry of radioactive waste clearance in the future.

Comparison treatment planning with the measured change the dose of each Junction section according to the error of setup CSI Treatment with Conventional, IMRT, VMAT (Conventional, IMRT, VMAT을 이용한 CSI 치료시, Setup 오차에 따른 각 Junction부의 선량변화측정을 통한 치료계획 비교)

  • Lee, Ho Jin;Jeon, Chang Woo;Ahn, Bum Suk;Yu, Sook Hyeon;Park, So Yeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.217-224
    • /
    • 2014
  • Purpose : Conventional, IMRT, at CSI treatment with VMAT, this study compare the treatment plan with dose changes measured at Junction field according to the error of Setup. Materials and Methods : This study established Conventional, the IMRT, VMAT treatment planning for CSI therapy using the Eclipse 10.0 (Eclipse10.0, Varian, USA) and chose person in Seoul National University Hospital. Verification plan was also created to apply IMRT QA phantom for each treatment plan to the film measurements. At this time, the error of Setup was applied to the 2, 4, 6mm respectively with the head and foot direction. ("+" direction of the head, "-" means that the foot direction.) Using IMRT QA Phantom and EBT2 film, was investigated by placing the error of Setup for each Junction. We check the consistency of the measured Film and plan dose distribution by gamma index (Gamma index, ${\gamma}$). In addition, we compared the error of Setup by the dose distribution, and analyzing the uniformity of the dose distribution within the target by calculating the Homogeneity Index (HI). Results : It was figured out that 90.49%-gamma index we obtained with film is agreement with film scan score and dose distribution of treatment plan. Also, depend on the dose distribution on distance, if we make the error of Setup 2, 4, 6mm in the head direction, it showed that 3.1, 4.5, 8.1 at $^*Diff$(%) of Conventional, 1.1, 3.5, 6.3 at IMRT, and 1.6, 2.5, 5.7 at VMAT. In the same way, if we make the error of Setup 2, 4, 6mm in the foot direction, it showed that -1.6, -2.8, -4.4 at $^*Diff$(%) of Conventional, -0.9, -1.6, -2.9 at IMRT, and -0.5, -2.2, -2.5 at VMAT. Homogeneity Index(HI)s are 1.216 at Conventional, 1.095 at IMRT and 1.069 at VMAT. Discussion and Conclusion : The dose-change depend on the error of Setup at the CSI RT(radiation therapy) using IMRT and VMAT which have advantages, Dose homogeneity and the gradual dose gradients on the Junction part is lower than that of Conventional CSI RT. This a little change of dose means that there is less danger on patients despite of the error of Setup generated at the CSI RT.

A Pilot Research for Real-Time Specific Patient Quality Assurance Using the Hybrid Optimized Vmat Phantom (Hovp) in Volume Modulated Arc Therapy (체적변조회전치료에서 Hybrid Optimized VMAT Phantom (HOVP)을 이용한 실시간 환자 맞춤형 정도관리를 위한 예비연구)

  • Huh, Hyun-Do;Choi, Sang-Hyoun;Kim, Woo-Chul;Kim, Hun-Jeong;Kim, Kum-Bae;Kim, Seong-Hoon;Cho, Sam-Ju;Min, Chul-Kee;Cho, Kwang-Hwan;Lee, Sang-Hoon;Lee, Suk;Shim, Jang-Bo;Shin, Dong-Oh;Ji, Young-Hoon
    • Progress in Medical Physics
    • /
    • v.22 no.4
    • /
    • pp.206-215
    • /
    • 2011
  • The purpose of this was to investigate the measurement of fluence dose map for the specific patient quality assurance. The measurement of fluence map was performed using 2D matrixx detector. The absorbed dose was measured by a glass detector, Gafchromic film and ion chamber in Hybrid Optimized VMAT Phantom (HOVP). For 2D Matrixx, the results of comparison were average passing rate $85.22%{\pm}1.7$ (RT_Target), $89.96%{\pm}2.15$ (LT_Target) and $95.14%{\pm}1.18$ (G4). The dose difference was $11.72%{\pm}0.531$, $-11.47%{\pm}0.991$, $7.81%{\pm}0.857$, $-4.14%{\pm}0.761$ at the G1, G2, G3, G4. In HOVP, the results of comparison for film were average passing rate (3%, 3 mm) $93.64%{\pm}3.87$, $90.82%{\pm}0.99$. We were measured an absolute dose in steep gradient area G1, G2, G3, G4 using the glass detector. The difference between the measurement and calculation are 8.3% (G1), -5.4% (G2), 6.1% (G3), 7.2% (G4). The using an Ion-chamber were an average relative dose error $-1.02%{\pm}0.222$ (Rt_target), $0.96%{\pm}0.294$ (Lt_target). Though we need a more study using a transmission detector. However, a measurement of real-time fluence map will be predicting a dose for real-time specific patient quality assurance in volume modulated arc therapy.

Evaluation of the combination of Bone Scan Image and Pelvic X-ray Image (뼈 검사 영상과 골반 X선 영상의 결합 유용성 평가)

  • Lee, Choong Woon;You, Yeon Wook;Kim, Yong Keun;Weon, Woo Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.23-27
    • /
    • 2018
  • Purpose The introduction of bone scan has been reported as a useful tool in the diagnosis, treatment, and treatment response of skeletal disease. The purpose of this study is to improve the anatomical information and tolerance of the bone by combining bone scan and pelvic X-ray without additional radiation exposure. Materials and Methods From November 2015 to August 2016, 236 patients(64 men and 172 women, average age $50.96{\pm}15.39years$) take Bone scan and Pelvis AP(Anteroposterior) X-ray scan at the National Cancer Center. The scan equipment was a gamma camera, Symbia Ecam (SIEMENS, Germany), and a digital x-ray, DRS-800 (Listem, Korea). Osirix version 3.8.1 (Osirix, USA) and Stata/SE version 14.0 (StataCorp, USA) were used for image combination and analysis. The patient was intravenously injected with $^{99m}Tc-DPD$ (740 MBq), and the scan was performed 2 to 4 hours later. Gamma camera image acquisition were Matrix size $256{\times}1024$, Zoom 1.00, and scan speed 17 cm/min. The digital X-ray was made with a collimator size of $14^{{\prime}{\prime}}{\times}17^{{\prime}{\prime}}$, 77 kVp (60 to 97 kVp) and an average of 30 mAs (20 to 48). ASIS and pubic symphysis Select virtual points then Combine three virtual points and pelvic contour lines. The acquired images were evaluated by three radiologists who worked for more than 5 years in the nuclear medicine department. Results Of the total 236 patients, 216 (91.53%) were matched. The median and range (min~max) of the age were 67 (46~81) years old in the unmatched group and 52 (22~87) years old in the matched group, The Wilcoxon rank-sum test was performed to determine whether age was different between the two groups. As a result, the age difference between the two groups was statistically significant at p < 0.0001. Of the 64 men, 60 (93.75%) were match and of the 172 women, 156 (93.75%) were match. There was no statistically significant difference according to gender(p = 0.4542). Of the 54 patients without pelvic lesions, 54 (100.00%) were match, and 162 (89.01%) of 182 patients with pelvic lesions were match. There was a statistically significant difference according to the presence of pelvic lesions. Conclusion There are many variables in the combination of bone scan and pelvic X-ray imaging, and the patient's age and pelvic lesion may have some effect on the image combination. This study is expected to be useful for the diagnosis of pelvic osteosarcoma of children without radiation exposure. It is expected that this combination of images will help to develop the nuclear medicine image.

Irradiation Preservation of Korean Fish 1. Kadurization of croaker, yellow corvenia and roundnose flounder (방사선조사에 의한 한국산어류의 품질보존에 관한 연구 1. 민어, 참조기 및 물가자미의 감마선 조사 후의 보존특성)

  • CHUNG Jong Rak;KIM Su Ill;LEE Min Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.9 no.2
    • /
    • pp.129-142
    • /
    • 1976
  • Optimum doses The optimum dose that may be defined as the dose below the maximum permissible dose, yet would bring about a significant storage life extension at refrigerated temperatures, varied with species of fish as well as with the postirradiation storage temperatures. Thus the dose of 0. 1 Mrad was considered to be optimum for the croaker and yellow corvenia at $0^{\circ}C$, while at $5^{\circ}C$ the dose of 0.2 Mrad would be suitable for both species. The roundnose flounder was more radiosensitive and even at the dose of 0.1 Mrad a slight irradiation odor was detected immediately after the radiation treatment. Such degree of irradiation odor disappeared upon storage, therefore, the dose of 0.1 Mrad was considered to be optimum for the roundnose flounder at both $0^{\circ}\;and\;5^{\circ}C$. Storage life extension The croaker meats irradiated at 0.1 Mrad could be held at $0^{\circ}C$ as long as 5 weeks in good acceptable conditions, while the unirradiated control became unacceptable within 2 weeks-3-4 for extension of storage life at $0^{\circ}C$. At the storage temperature of $5^{\circ}C$, the storage life of 0.2 Mrad irradiated samples was extended from less than one week to 4 weeks--4-5 fold extension. The storage life extension of 0.1 Mrad irradiated yellow corvenia at $0^{\circ}C$ was from less than 2 weeks for the unirradiated to 4 weeks-approximately a-s folds and that of 0.2 Mrad irradiated samples stored at $5^{\circ}C$ was from 5 days to 3 weeks 4-5 folds. The roundnose flounder meats irradiated at 0.1 Mrad could held at $0^{\circ}C$ for 3-4 weeks as compared to less than 1 week for the unirradiated and at $5^{\circ}C$ the storage life could be extended from less than 3 days to up to 3 weeks. Thus the storage life extension by 4-5 folds and by 6-7 folds was possible at $0^{\circ}C\;and\;5^{\circ}C$ storage, respectively. Postirradiation storage microbiology and biochemistry In general 10 fold reduction of initial microflora was realized as a result of irradiating fish samples at 0.1 Mrad. The extent of microflora reduction increased with increasing doses applied, but not proportionately dependent. The microbial growth in the irradiated was severely retarded during the subsequent storage period, lagging far behind that of the irradiated control samples except in the late storage phase, when the levels of microflora of the irradiated either approached to or rose above the levels of the unirradiated. The microbiological changes caused by irradiation was reflected in the pronounced suppression of TVB and TMA accumulation during the storage period. This suggests that irradiation treatment brought about both quantitative and qualitative changes in microflora initially present and it is reasonable to suggest that the microflora removed by irradiation in fact represent most of the flora capable of producing TVB and TMA in normal fish spoilage process.

  • PDF

A Study on the Change of Image Quality According to the Change of Tube Voltage in Computed Tomography Pediatric Chest Examination (전산화단층촬영 소아 흉부검사에서 관전압의 변화에 따른 화질변화에 관한 연구)

  • Kim, Gu;Kim, Gyeong Rip;Sung, Soon Ki;Kwak, Jong Hyeok
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.503-508
    • /
    • 2019
  • In short a binary value according to a change in the tube voltage by using one of VOLUME AXIAL MODE of scanning techniques of chest CT image quality evaluation in order to obtain high image and to present the appropriate tube voltage. CT instruments were GE Revolution (GE Healthcare, Wisconsin USA) model and Phantom used Pediatric Whole Body Phantom PBU-70. The test method was examined in Volume Axial mode using the pediatric protocol used in the Y university hospital of mass-produced material. The tube voltage was set to 70kvp, 80kvp, 100kvp, and mAs was set to smart mA-ODM. The mean SNR difference of the heart was $-4.53{\pm}0.26$ at 70 kvp, $-3.34{\pm}0.18$ at 80 kvp, $-1.87{\pm}0.15$ at 100 kvp, and SNR at 70 kvp was about -2.66 higher than 100 kvp and statistically significant (p<0.05) In the Lung SNR mean difference analysis, $-78.20{\pm}4.16$ at 70 kvp, $-79.10{\pm}4.39$ at 80 kvp, $-77.43{\pm}4.72$ at 100 kvp, and SNR at 70 kvp at about -0.77 higher than 100 kvp were statistically significant. (p<0.05). Lung CNR mean difference was $73.67{\pm}3.95$ at 70 kvp, $75.76{\pm}4.25$ at 80 kvp, $75.57{\pm}4.62$ at 100 kvp and 20.9 CNR at 80 kvp higher than 70 kvp and statistically significant (p<0.05) At 100 kvp of tube voltage, the SNR was close to 1 while maintaining the quality of the heart image when 70 kvp and 80 kvp were compared. However, there is no difference in SNR between 70 kvp and 80 kvp, and 70 kvp can be used to reduce the radiation dose. On the other and, CNR showed an approximate value of 1 at 70 kvp. There is no difference between 80 kvp and 100 kvp. Therefore, 80 kvp can reduce the radiation dose by pediatric chest CT. In addition, it is possible to perform a scan with a short scan time of 0.3 seconds in the volume axial mode test, which is useful for pediatric patients who need to move or relax.

Modification of Trunk Thickness of MIRD phantom Based on the Comparison of Organ Doses with Voxel Phantom (체적소팬텀과의 장기선량 비교를 통한 MIRD팬텀 몸통두께 수정)

  • Lee, Choon-Sik;Park, Sang-Hyun;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.199-206
    • /
    • 2003
  • Because the MIRD phantom, the representative mathematical phantom was developed for the calculation of internal radiation dose, and simulated by the simplified mathematical equations for rapid computation, the appropriateness of application to external dose calculation and the closeness to real human body should be justified. This study was intended to modify the MIRD phantom according to the comparison of the organ absorbed doses in the two phantoms exposed to monoenergetic broad parallel photon beams of the energy between 0.05 MeV and 10 MeV. The organ absorbed doses of the MIRD phantom and the Zubal yokel phantom were calculated for AP and PA geometries by MCNP4C, general-purpose Monte Carlo code. The MIRD phantom received higher doses than the Zubal phantom for both AP and PA geometries. Effective dose in PA geometry for 0.05 MeV photon beams showed the difference up to 50%. Anatomical axial views of the two phantoms revealed the thinner trunk thickness of the MIRD phantom than that of the Zubal phantom. To find out the optimal thickness of trunk, the difference of effective doses for 0.5 MeV photon beams for various trunk thickness of the MIRD phantom from 20 cm to 36 cm were compared. The optimal thunk thickness, 24 cm and 28 cm for AP and PA geometries, respectively, showed the minimum difference of effective doses between the two phantoms. The trunk model of the MIRD phantom was modified and the organ doses were recalculated using the modified MIRD phantom. The differences of effective dose for AP and PA geometries reduced to 7.3% and the overestimation of organ doses decreased, too. Because MIRD-type phantoms are easier to be adopted in Monte Carlo calculations and to standardize, the modifications of the MIRD phantom allow us to hold the advantage of MIRD-type phantoms over a voxel phantom and alleviate the anatomical difference and consequent disagreement in dose calculation.