• Title/Summary/Keyword: 간극요소

Search Result 231, Processing Time 0.027 seconds

Acoustic Transmission Characteristics of the Cylindrical Cavity with an Auxiliary Cavity and a Gap (보조 공동과 간극을 갖는 원통형 공동의 음향 전달 특성)

  • Jeong, Won-Tae;Kang, Yeon-June;Kim, Seock-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.173-183
    • /
    • 2010
  • In this paper, acoustic transmission characteristics are theoretically considered on a cylindrical cavity system. The cylindrical cavity system is a simplified model of the acoustic cavity of King Seongdeok Divine Bell and it consists of a main cavity, a gap and an auxiliary cavity, Under a point sound source in the main cavity, acoustic frequency response property is determined and acoustic modes are analysed. The results are compared with those by the boundary element analysis using SYSNOISE. Using the proposed theoretical method, the effect of the auxiliary cavity and the gap on the resonance frequency and sound transmission characteristics is identified. Finally the best combination of the auxiliary cavity and gap is determined for the maximum transmission of the source frequency.

A Numerical Study on the Prevention of Clogging in Granular Compaction Pile (쇄석다짐말뚝에 발생하는 간극막힘 저감방안에 관한 수치해석적 연구)

  • Jeong, Jaewon;Lee, Seungjun;Park, Nowon;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.43-51
    • /
    • 2013
  • Recently, engineering problems such as long-term settlement, differential settlement, and the resultant structural damage, have been frequently reported at construction sites. Use of Sand Compaction Piles(SCP) and Granular Compaction Piles(GCP) are good at remedying existing problems, improving bearing capacity and promoting consolidation. However, such compaction piles have the potential for clogging, which would limit their usability. Investigations into the potential for clogging in SCP, GCP, and GCP mixed with sand has not been thoroughly conducted and is the objective of this current study. Large scale direct shear tests were performed on sections of SCP, GCP, and sand mixed GCP to evaluate bearing capacity. Discrete Element Method analyses were conducted with PFC3D and Finite Element Analyses were conducted with MIDAS GTS to propose an algorithm to help reduce clogging in the granular compaction piles. Results from the large scale direct shear test and multiple simulations suggest a 70% gravel and 30% sand mixing ratio to be optimal for bearing capacity and reducing clogging.

Crease Behavior of Thin Membrane (멤브레인의 접힘 거동 연구)

  • Woo, Kyeong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.905-911
    • /
    • 2007
  • In this paper, geometrically and materially non-linear finite element analyses were performed to study the crease behavior of thin membranes. The cross-section of the membrane was modeled with 2-dimensional plane strain elements. To simulate the creasing process, the membrane mesh was folded, compressed to prescribed crease gauge by activating two rigid contact surfaces, and then released to give the crease topology. Various crease gauges were considered to investigate the effect of crease intensity on the initial deployment angle. The crease geometry was also obtained by experiments and the results were compared.

Analysis of Mechanical Face Seals for Design Purpose Geometric Effects on sealing Gap (설계목적을 위한 기계 평면 시일의 해석 제1보:시일링 간극에 대한 기하학적 영향에 관하여)

  • 김청균
    • Tribology and Lubricants
    • /
    • v.6 no.1
    • /
    • pp.89-98
    • /
    • 1990
  • 시일의 접촉면이 경사지고, 정현파형이 존재하며 코닝이 있는 경우에 대한 해석을 하였다. 또한 시일링 간극에 존재하는 유체는 비압축성 점성유체이다. 이러한 요소들을 고려한 레이놀즈 방정식의 일반해를 구하기 위하여 멱급수 근사이론을 이용하여 압력분포를 구하였고, 이 결과를 이용하여 시일의 누설 유동량 및 마찰 토오크를 해석하였다. 계산 결과에 의하면 시일 접촉면의 표면파형이나 코닝에 비하여 경사정도가 시일의 성능에 커다란 영향을 주고 있음을 보여주고 있다.

외부침수 냉각방식 원자로 압력용기의 구조적 건전성에 미치는 외부침수 열대류계수의 영향에 대한 연구

  • 김종성;전태은
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.745-750
    • /
    • 1998
  • 원자로 압력용기 대형 냉각재상실사고에 기인하는 노심용융사고시 노심용융물과 내벽사이의 간극 및 외벽의 열대류계수의 건전성에 대한 영향을 고찰하기 위하여 건전성평가를 수행하였다. 먼저 유한요소해석을 통해 간극 고려 여부와 외벽의 열대류계수 변화에 따른 원자로 압력용기의 온도 및 응력 분포를 결정하였으며, 결정된 온도 및 응력 분포, Larson-Miller 곡선과 손상 법칙을 이용하여 원자로 압력용기의 손상 정도와 파손 시간을 계산하였다.

  • PDF

The gaps between technology and policy in the disaster broadcasting (재난방송에서 기술과 정책의 간극)

  • Kwak, Chunsub;Suh, Young-Woo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.127-130
    • /
    • 2021
  • 지상파 방송에서 재난방송 기술이 진화되고 있다. 하지만 재난방송 정책은 진화된 기술을 제도화하지 못하고 있다. 본 연구는 기술이 재난방송 정책 변화를 줄 수 있는 다섯 가지 요소에서 정책과 기술이 어떤 간극을 보이는지 살펴보았다. 결론적으로 현재 '재난방송 및 민방위경보방송의 실시에 관한 기준'은 신규 기술에 대한 규정을 담기 부족하다. 따라서 재난경보 방송을 구체화하고 재난경보 메시지와 재난방송 수신환경과 수신기에 대한 기술적 규격을 제도화하기 위한 가칭 '재난방송 기술기준'을 시급히 마련하여 할 필요성을 제기하고 있다.

  • PDF

S.D.O.F Macro-element for Interaction of Deep Foundation (단자유도 매크로요소를 이용한 깊은기초의 상호작용 모델)

  • Rha, Chang-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.347-355
    • /
    • 2008
  • In this paper single degree of freedom macro-element model was presented to investigate the interaction between soil and the deep foundation under the lateral loads. It was made by modelling each component related to the soil-structure interaction and combining them into one piece. It enhanced the conventional method that was not able to break down the interaction components in piece due to the usage of simple spring element for interaction. A proposed macro-element classified the stress components in relation to the interaction into frictional and compressive resistance. Each component was modelled using the classical plasticity theory, and finally combined in parallel. An example study was carried out using the proposed macro-element for deep foundation embedded in three layered cohesive soil. It showed improved results compared to the conventional method by producing additional information of the interaction components as well as the overall behavior of foundation.

Analysis of Debonding between Mixed Finite Elements for Saturated Porous Media (혼합유한요소를 통한 다공질매체의 요소분리해석)

  • Tak, Moonho;Lee, Janggeun;Ban, Hoki;Kang, Jaemo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.2
    • /
    • pp.53-58
    • /
    • 2017
  • In this paper, we propose a new method to debond between mixed finite elements for porous media in ABAQUS (2014). ABAQUS just provides debonding algorithm for the u-p model using cohesive elements in standard version. However, this approach has a drawback that it is hard to simulate complex debonding problems like element separation, rigid body motion, and contact between separated elements in standard version. ABAQUS-explicit can resolve these complex problems, but cohesive elements for the u-p model cannot be applied. We introduce a new algorithm for debonding for porous media instead of using cohesive elements. In this method, subroutines VUMAT to apply constitutive models and VDISP to separate elements in ABAQUS are used to simulate debonding problems. In addition, a simple 2-D example is demonstrated in the ABAQUS-explicit solver.

Dynamic Analysis of Flexible Mechanisms with Clearances Using Finite Elements (유한요소를 이용한 유연성 간극기구의 동적 해석)

  • 길계환;윤용산
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.288-297
    • /
    • 1990
  • The method of analyzing flexible mechanisms with clearances was studied considering flexibility of beams in the mechanism using finite elements. Both ends of a beam were modeled as free following Dubowsky's impact pair model. Instead some force constraints were imposed at imposed at the connections between adjoining links. Coulomb model has been developed using dry frictions in place of tangential damping forces in the impact pair model and the contact compliance and damping coefficient approximated in a form of root function were used. As examples, impacts of a rigid ball in a cylinder, impact beam model and four-bar mechanisms made up of three flexible links with clearance connections were simulated numerically. The results from examples showed similar but a little bit smaller magnitude of impact forces compared with published studies.

Determination of Equivalent Hydraulic Conductivity of Rock Mass Using Three-Dimensional Discontinuity Network (삼차원 불연속면 연결망을 이용한 암반의 등가수리전도도 결정에 대한 연구)

  • 방상혁;전석원;최종근
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.52-63
    • /
    • 2003
  • Discontinuities such as faults, fractures and joints in rock mass play the dominant role in the mechanical and hydraulic properties of the rock mass. The key factors that influence on the flow of groundwater are hydraulic and geometric characteristics of discontinuities and their connectivity. In this study, a program that analyzes groundwater flow in the 3D discontinuity network was developed on the assumption that the discontinuity characteristics such as density, trace length, orientation and aperture have particular distribution functions. This program generates discontinuities in a three-dimensional space and analyzes their connectivity and groundwater flow. Due to the limited computing capacity In this study, REV was not exactly determined, but it was inferred to be greater than 25$\times$25$\times$25 ㎥. By calculating the extent of aperture that influences on the groundwater flow, it was found that the discontinuities with the aperture smaller than 30% of the mean aperture had little influence on the groundwater flow. In addition, there was little difference in the equivalent hydraulic conductivity for the the two cases when considering and not considering the boundary effect. It was because the groundwater flow was mostly influenced by the discontinuities with large aperture. Among the parameters considered in this study, the length, aperture, and orientation of discontinuities had the greatest influence on the equivalent hydraulic conductivity of rock mass in their order. In case of existence of a fault in rock mass, elements of the equivalent hydraulic conductivity tensor parallel to the fault fairly increased in their magnitude but those perpendicular to the fault were increased in a very small amount at the first stage and then converged.