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Introduction

In the industries such as motor, power, and
aerospace, mechanical face seals are widely used
to prevent leakage of liquids or gases.

Theoretical and experimental works of mecha-
nical seals have been reported in the literature by
a large number of investigators [1-15]. The study
of a misaligned face seal has been reported by
Sneck [2-4], Hardt and Godet [5], Metcalfe [6],
and Etsion [7-9]. These investigators focused on
the effects of misalignment on seal performance;
they reported that misalignment plays a vital
role to axial force, tilting moment, torque and
leakage flow rate.

Experiments done by Pape [10] and Stanghan-
Batch and Iny [11] indicated the significance of

surface waviness. Lebeck [12] examined the role

of waviness on seal performance and developed
an model for predicting the size of the sealing
gap in face seals. He reported that an increases in
waviness amplitude reduces friction, and increases
leakage.

Coning of mating faces arises from the mecha-
nical and thermal distortions, and wear. Etsion et
al. [13-15] have shown that coning effects are
very important to the separating force in the sea-
ling gap.

In the present work, the combined geometric
effects of mechanicial seals are analyzed for steady
laminar and incompressible fluids using a temper-
ature dependent viscosity. An analytical solution
is obtained with a pressure distribution in

polynomial form ; using this solution, the leakage

flow rate is estimated.
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Analysis

In the seal leakage analysis with misalignment,
surface waviness and coning included the follow-
ing assumptions are made for short seals :

1. Steady axisymmetric flow ;

2. Incompressible viscous fluid ;

3. The axial flow is negligible compared with
the small sealing gap ;

4. The temperature distribution with respect to
the axial direction is symmetric ;

5. Body forces and inertia forces are negligible.

Temperature Distribution. We use the energy
equation to determine the distribution of temper-
ature within the sealing gap in mechanical seals.
Considering the above assumptions, the reduced
energy equation for an incompressible viscous

fluid thus becomes

oT_K 3 (0
,DCer = By

ol (5] (5 ] W

where the specific heat ¢, and the lubricant con-

ductivity coefficient K have been assumed as con-
stants. r is the radial coordinate and z denotes
position across the sealing gap. v, and v, represent
the radial and circumferential velocities, which
are given by Egs. (13) and (14).

Let’s introduce the dimensionless variables to

normalize the energy equation(l),

=_ 7 _r—r, _Z+h Yy
= R re—r; z 25 Vr U
_ve =~ T-Ty
V= U T_T[_Tu (2)

By substituting the dimensionless variables of
Egs.(2)into Eq.(1) and rearranging with the
Brinkman constant [Br= 7,U?/K(T,-T,)], the

energy equation is rewritten as follows :
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where @ =K/pc, is the thermal diffusivity. In
Eq.(3), the rate at which heat can be conducted
along the radial direction is small compared with
the rate of conduction to the seal surfaces, since
the leading coefficient, 2h/w)*is very small. It is
also clear that the convection term may be drop-
ped for laminar flow and thin film thickness. For
a laminar flow and increased temperature differ-
ence [16] the dissipation terms may be neglected.

Then the energy equation can be simplified to

'T
EYA

=0 (4)

The accuracy of Eq.(4) is increasing for the de-
creased Brinkman number. The boundary condi-

tions for Eq.(4) are

at Z=27Z,(z=z,) (5a)

=0(T=T,) 5
1 at Z=7,(z=z2)) (5b)

T
T=1(T=T))

Integrating Eq.(4) twice with respect to Z we

Z7—2Z. 6)

Velocity DistributionsA dimensionless analysis
of the order of magnitude of various terms which
are included into the Navier-Stokes equation
leads to the simplified equation of motion in the
sealing gap. The mean sealing gap is assumed to
be very small compared with the width of the
face seal ;ie., 2h<< <w&. When the fluid film of
the sealing gap moves for the critical range of the
Reynolds number, Re= 2ho,U/7,, the influence
of the inertia forces can be neglected ;i.e., Re<
<w /2h. Under these conditions, the simplified
equations of motion for the steady flow with
temperature dependent variable viscosity are

given by
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The boundary conditions for Eq.(7) are

v.=() at z=z, (9a)
v.=0 at z—=z, (9b)
The boundary conditions for Eq.(8) are

vy =U at z=z, (10a)
vy =10 at z=z, (10b)

The viscosity of the lubricant is assumed to
vary as a function of temperature according to

the following equation :

T

n=n.es" T 1)
where o is the temperature-viscosity coeffi-
cient given by the reference [17]. The viscosity in
dimensionless form can be rewritten by substitut-
ing Eq.(6) into Eq.(11) :

a=a*T,(1—A.), @=d"T.A, B, —1)

Integration of Eqs.(7) and (8) gives the velocity
distributions, we obtain :

_4h'( op
" ( 2 Je@) 13
_4b'rop
Vﬁ_rnr [ 80 Jf(ﬂ)+Ug (ﬂ) (14)
where
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Pressure Distribution. Using the temperature
and velocity distributions, the Reynolds equation
for an incompressible fluid in polar coordinates is
derived by integrating the continuity equation
over the sealing gap.

=72;Ua—% [I.en +2.) 1)

where

Fz:“[a_lfl—le'“ ]

The dimensionless parameters are defined as

follows :
— (2}—1)213 ’ I
T w(re—ry)? =5
TR T 1

Substituting the above parameters into Eq.(15)
and employing the narrow seal approximation
[8], a simplified Reynolds equation for the nar-
row seal width and the negligible seal curvature

effect is given by

2w 22]= 2 ra+z,) )
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To solve the equation, let the dimensionless sea-

ling gap, H and P be expressed by the polyno-

mial form
AR, 6, t)=§ﬁiR‘ 18)
P(R,4, t)=}§(})PiR‘ (19

where 0<R <1. Substitution of these dimension-

less quantities into Eq.(17)

[ 3 (Q" k+1 ) ﬂt—k+le—['+|

+(m_g+2)ﬁl—kpm—:+z]‘Am }Rmzo (20)

For Eq.(20) to be valid, all coefficients of all
powers of R must vanish independently. This
generates a recursive and infinite series of equa-
tions that involve the unknovn P,. Solution of

these equations leads to recursive formulae for P,

given by
-8,
Pppg=m=——————— @1
" t+1) b+ 2)HS
where
n i+l J -~ A ~
Sn=§ = EB (n'—i)HkH)—k [3 (1"“]+ 2 )Hi4j+2Pn'i

+ (it 1)Hisn Pt | +3 (oo DB, P — A

The unknown parameters of Eq.(21) are given by

Ho=1+a,cos §+h/(2h)

H,=¢ cos 6+C,

H,=C, for j=2
r

Ao=—2[—azsin 0~§unucos[ n,ﬂ——Qut]
I,
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—é‘,n,cos[ n,0—8.t H— g}{ll"cos[n,ﬂ —Q.t ]

A,=—?Zesin 4, A,=0, A,=0, -

1

where a,=¢R/(1—R)
The coefficients of the series (19) are deter-
mined by substituting the recursive formulae (21)

and the pressure boundary conditions
(22a)
(22b)

P=P;» at R=20

P=P.. at R=1

Substitution of these boundary conditions into

Eq.(19) gives the result

Po=P. at R=0 (23a)
S P.=Pe: at R=1 (23b)

The second coefficient P; of the polynomial form
may be determined by subsututing Eq.(21) for n
=0, 1, 2,--- into Eq.(23b) and truncate the infi-
nite series at some N that gives acceptable accura-
cy. The recursive formulae (21) generates P, or
higher order coefficients, since Py and P, are
solved. Thus the pressure distribution of the seals
with the complicated geometry can be determined

to any desired accuracy in R.

Sealing gap Analysis. Many of the boundary
conditions involved in the fluids problem for
seals are coupled to the determination of the sea-
ling gap. The overall sealing gap 2h between the
stator and the rotor described by a function of

the form
2h(r, 8, t)=2 h+hp+h+h. (24

Here 2h is the mean film thickness, h,, represents
the sealing gap variation due to misaligned seal
geometry, h denotes a random part of the film
thickness due to surface waviness between the
seal ring and the seal seat, and h. is the sealing

gap change due to coning effects.
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1. Sealing gap due to angular misalignment.

The geometry for a misaligned face seal is
illustrated in Fig. 1. The tangential coordinate is
chosen so that it starts through the point of max-
imum thickness. It can be assumed that the mag-
nitude of the misalignment is small compared
with the radius, which is acceplable for most
practical seals. The film thickness vartation h,, for

a misaligned seal is given by

hm=ZEe[R+ 1R_R]cos g {25)

where § is the angular position measured from
the point of maximum sealing gap and ¢ is a ult
parameter restricted by the geometry of the mis-
aligned disk ; i.e., 0<e<(1-R).

==

Fig. 1. Mechanical face seal with angular misalign-

ment and linear coning.

2. Sealing gap caused by sinusoidally wavy
surfaces.

The stator surface is tilted with respect to the

rotor surface by the small angle 7. Both surfaces

are wavy and project away from and toward each

other. Since the tilt angle ¥ between the two
surface is small, the projection length of the
waviness height of the stator onto the normal
vector of the rotor is comparable to the compo-
| hy | cosy ~ | h |.
Also it will be assumed that the tangential film

site waviness height ; i.e.,

thickness varies sinusoidally around the seal cir-
cumference as shown in Fig. 2. The variations of
the sealing gap h due to the wavy surfaces can be
expressed as

h=— | hy | sin (8 —Qut) —h, isin(n,8—8.t) (26)

where | %, | and |h,| are the amplitudes of
surface waviness at the stator and rotor.
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Fig. 2. Sinusoidal waviness in mechanical seals.

3. Sealing gap due to coning effects.
The composite surface profile H, of the upper
and lower seals at the mating zone may be

approximated in polynomial form
H.= § CiRi (27)

where C; is zero because it will be grouped with
the mean sealing gap 2h. The unknown constants
C; (i>1) will be determined by boundary condi-
tions. If the coning model as shown in Fig. 1 is
linear, the coning shape is obtained for the
boundary conditions ; H.=0 at R=0 and H,=e¢.
at R=1

H.= (ecu+5(‘l)R 28
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The first term in Eq.(28) is a surface profile
variation caused by coning at the upper edge and
the second term corresponds to the lower edge of

the mating zone.

Volumetric Flow Rate. Leakage takes place
through the radial sealing gap formed by the two
sliding surfaces. The radial leakage flow rate of
an incompressible fluid at radius r is obtained

from :

Q=nLZT”f:‘rvfdzd0 (29

By substituting Eq.(13) into Eq.(29) and integ-
rating it with respect to z, the volumetric leakage
flow rate is obtained.

-, _Ej 2—: 3 ap
Q—mﬂ (2h) r[—ar ]da (30)
where
a*T, (4,-1 — a2
y— e !1 1-e

al-o) V@4 6 -0

[1+a,+(1—az)e‘“]}

By substituting the dimensionless parameters of
Eq.(16) and the series of Eqs.(18) and (19) into
Eq.(30), the dimensionless flow factor Q is given

by

2r

Q =Q=n7 [ (BB, R+-)d0

2 hwro (ro—r;)
31

where
B,=RP,H}, B,=(1-R)P,H +RA:(3P,H,
+2P,H,), -
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Since the flow rate physically cannot vary with
R, it can be simplified using R=0. Integrating
Eq.(31) with respect to #, after substituting the
expressions of Hg and By into Eq.(31), the

dimensionless leakage flow rate is given by
where
Q=7RP,| 27- 3541 (6K +LKi)

+3a; (r—&Ke: +8.Kes)

+ 3 {x (CiHED + 288K+ 2 mbul Kol

—682 (;uK24+§les)] (32)

where

lez_aVZnuv n; %Sin[ [Z.Qu—.Q,]t]

K12=3‘ﬂu“2nl‘ %Sin[ [Qu- zgl]t]
Kllzb\wnw!mw ”905[ [Qu_gt]t]

Kzz=_54nu (2 LZT'Sin [Qut]

Kes=—68n, 2 -g-sin [.Qltj_
Kes=—8nu 1 7 sin[Qut ]

Koy =—8ny i1 7sin(Q,t),

K34=5[a,nuum“ +a/nu+1mmw ] %COS[ [Qu“Q: ]t]

and a symbol, & (m)m) is defined by

0, if m#n

Oimim =
me 1, if m=n

Friction Torque. The torque caused by the vis-

cous friction is defined as

_ 2 To aVe] 2
T,—fo fn n[———az r’drdf 33
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For the negligible pressure gradient in the cir-
cumferential direction, the velocity gradient in

the z direction is given by differentiating Eq.(14)

3ve a*TrA;Ue"*T"“""’[ 1~8.
oz 1—e 2h J 6
Substituting Eqs.(12) and (34) into (33), we
obtain

* - 2
" TA WU (1 -8,) & _1__ D2
T e BB T
+2(1—R)RTL»4+(1—R)’T.._3] (35

where T_,=0, T.,=0, T,=1, T,=—C;

fori=1

Results and Discussion
The problem was solved for 3 geometries such
as misalignment, sinusoidal waviness of the mat-
ing surfaces and coning. The upper ring is a steel
and the lower ring is Carbon-graphite. The fol-
lowing dimensions and operating conditions were
selected :

Seal inner radius, 6.35 cm
Mean sealing gap, 2h 40 .4m
Reference viscosity 1.62 X 10°°
(MIL-L-7807), 7. pa-s
Thermal conductivity 9.66 X 102
(MIL-L-7807), K Ni-T
Temperature viscosity 3.6 X 1077
coefficient, o * 1/°K
Shaft speed, @ 419 rad /5
Temperature differential, 500 C
AT
Internal pressure, P;, 13.8 x10*
N/m?
External pressure, P, 10.1 X10*
N /m?

Fig. 3 shows the convergence of pressure
coefficient P; of Eq.(19) for the various R’s, 2h =
40 (pm), €=0.05 t= 133 X 10°%Gs) and U =
36(m /). It shows that four or five terms are
sufficient to obtain good accuracy. In general,
when the pressure coefficients converge very

quickly, the accuracy of the pressure distribution
was increased.
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Fig. 3. Vanations of pressure coefficient with itera-

tion number.
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Fig. 4. Variations of dimensionless pressure as a

function of dimensionless radius ratios.
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Fig. 4 shows results for the pressure distribu-
tions along the radial direction for various radius
ratios, R=r;/r,. When the internal pressure is
higher than the external pressure. As the dimen-
sionless radius ratio, R=(r-r;)Ar,-r;) increases, the
dimensionless pressure P monotonically decreas-
ing for all curves. Bryant and Kim [19] showed

] ]
4‘00—: 0.98 J4.00
3 0.94 ]
0.90
3 3.00 ] 0.86 J3.00
x ] R=0.82 ]
ar- ] 1
. 1 i
G ] ]
2.00 J2.00
L NG S " )
0.00 0.05 0.10 0.15 0.20

TILT PARAMETER, €

Fig. 5. Effect of tilt parameter on dimensionless
leakage flow rate for various radius ratios

and n=4000 rpm.

that an increase in radial distance decreases the
pressure for a compressible fluid with a similar
trend as shown in Fig. 4.

In Fig. 5, the volumetric flow rate due to the
geometric configurations represented by the mean
sealing gap, misalignment, wavy surfaces, and
coning, presented for different ratios of radius ; R
=0.82 to 0.98 and for the whole range from ¢=0
t0 €max=(1-R)/2 The curves show that an increase
in the ult parameter monotonically increases the
leakage flow rate. The leakage rate is consider-
ably sensitive for the misalignment at the higher
radius ratio. The reduction of the radius ratios
lowers considerably the volumetric leakage rate.
Etsion [7] showed the similar curves of non-
dimensional leakage flow as shown in Fig. 5.

In order to examine the behavior of the fric-
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Fig. 6. Torque as a function of mean sealing gap for
n=4000 rpm and e=(1-R)/2.
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Fig. 7. Torque as a function of sliding velocity for
2h=40pm and e=(1-R)/2.

tional torque, we have computed the solution for
a case in which 2h=40( #m), e=(1-R)/2 for Figs.
6 and 7. As the mean sealing gap increases, the
torque hyperbolically decreases for the wide
range of dimensionless radius ratio. Fig. 7 shows
the effect of sliding velocity on torque. As we
expected, the frictional torque is decreased for

the narrow seal width.
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Conclusions

A method to solve the Reynolds equation for
an incompressible liquid with temperature depen-
dent viscosity was developed using a power series
technique. This approach may by powerful for a
complex geometry. As demonstrated by this
work, the pressure in polynomial form converges
very rapidly. Sufficient accuracy may be obtained
including only the first four or five terms for the
various radius ratios and tilt parameters.

The calculated results seem to indicate that the
misalignment term plays an important role com-
pared with the surface waviness and coning in
the volumetric flow rate. As the dimensionless
radius ratio decreases, the torque is dramatically

increased for small sealing gap and high speeds.
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Nomenclature
2h

= mean sealing gap
= number of waves

n
p = pressure

r = radius

R =1/,

R =1/,

t = time

T = temperature

U = velocity of the driving surface
w = r,-1;

B =T,/T,

€ =7 (r,-r;)/2h, tilt parameter

7 = viscosity

A, =T, /T,

¢ =|h, | 2h

¢, =lhgl2h

g = density

w =

angular speed of the moving surface

97

Subscripts

C

1

o

10.

c = o n

= coning

= inner radius
= lower surface
= outer radius

= reference conditions
= upper surface
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