• Title/Summary/Keyword: 간극분포

Search Result 219, Processing Time 0.026 seconds

Analysis of Stability and Behavior of Slope with Solar Power Facilities Considering Seepage of Rainfall (태양광 발전시설이 설치된 사면의 강우시 침투를 고려한 안정성 및 거동 분석)

  • Yu, Jeong-Yeon;Lee, Dong-Gun;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.7
    • /
    • pp.57-67
    • /
    • 2023
  • Slope failures during rainfall have been observed in mountainous areas of South Korea as a result of the presence of solar power facilities. The seepage behavior and pore pressure distribution differ from typical slopes due to the presence of impermeable solar panels, and the load imposed by the solar power structures also affects the slope behavior. This study aims to develop a method for evaluating the stability of slopes with solar power facilities and to analyze vulnerable points by considering the maximum slope displacement. To assess the slope stability and predict behavior while considering rainfall seepage, a combined seepage analysis and finite difference method numerical analysis were employed. For the selected site, various variables were assumed, including parameters related to the Soil Water Characteristic Curve, strength parameters that satisfy the Mohr-Coulomb failure criterion, soil properties, and topographic factors such as slope angle and bedrock depth. The factors with the most significant influence on the factor of safety (FOS) were identified. The presence of solar power facilities was found to affect the seepage distribution and FOS, resulting in a decreasing trend due to rainfall seepage. The maximum displacement points were concentrated near the upper (crest) and lower (toe) sections of the slope.

Hydro-Mechanical Modelling of Fault Slip Induced by Water Injection: DECOVALEX-2019 TASK B (Step 1) (유체 주입에 의한 단층의 수리역학적 거동 해석: 국제공동연구 DECOVALEX-2019 Task B 연구 현황(Step 1))

  • Park, Jung-Wook;Park, Eui-Seob;Kim, Taehyun;Lee, Changsoo;Lee, Jaewon
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.400-425
    • /
    • 2018
  • This study presents the research results and current status of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to simulate the coupled hydro-mechanical behavior of fault, including slip or reactivation, induced by water injection. The first research step of Task B is a benchmark simulation which is designed for the modelling teams to familiarize themselves with the problem and to set up their own codes to reproduce the hydro-mechanical coupling between the fault hydraulic transmissivity and the mechanically-induced displacement. We reproduced the coupled hydro-mechanical process of fault slip using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. A methodology to formulate the hydro-mechanical coupling relations of two different hydraulic aperture models and link the solid element of TOUGH2 and the interface element of FLAC3D was suggested. In addition, we developed a coupling module to update the changes in geometric features (mesh) and hydrological properties of fault caused by water injection at every calculation step for TOUGH-FLAC simulator. Then, the transient responses of the fault, including elastic deformation, reactivation, progressive evolutions of pathway, pressure distribution and water injection rate, to stepwise pressurization were examined during the simulations. The results of the simulations suggest that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOLVAEX-2019 Task B and validated using the field data from fault activation experiments in a further study.

Evaluation of Piezocone Coefficient of Soft Grounds in the Areas of Gyeonggi and Incheon (경인지역 연약지반의 피에조콘계수 평가)

  • Park, Soo-Yong;Kim, Ki-Beom;Lee, Yun-Kyu;Baek, Seung-Cheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.5
    • /
    • pp.41-49
    • /
    • 2012
  • In this study, laboratory test, in-situ vane shear test and piezocone penetration test in the study area were conducted to investigate the engineering characteristics of soft soils at Cheongra District, Songdo District in Incheon City, the west coast of Gyeonggi province, and Sihwa District in Ansan city. The correlations among compression index, and in-situ vane shear test, and cone resistance were obtained. The variations of liquid limit, plasticity index, water content and compression index with respect to depth exhibit strong similarity. This means that they have strong correlations, which can be used to evaluate the local characteristics of the study area. Thus, the correlations between compression index and physical properties were analysed to investigate the engineering characteristics of soft soil in the study area. The relationships between the measured piezocone factor by empirical methods, and undrained shear strength obtained by triaxial compression test or in-situ vane shear test were compared. It shows the significant correlation and piezocone factors, $N_{kT}$are suggested for the study area.

Improvement of Soft Ground using Electric Heating Equipment (전기가열장치를 이용한 연약지반개량)

  • Han, Heuisoo;Im, Eunsang;Lee, Kumsung;Chang, Donghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.5-12
    • /
    • 2014
  • In this study, we developed the electric heating equipment and applied for soft ground improvement. The developed heat pipe is 4 m-length and consumes 1 kW/m, which is consisted of Ni-Cr wire. It was installed in 3.5~4.5 m below ground surface and heated for 96 hours (48 hours, 2 times). The temperature variation and vapor pressure caused by electric heating was measured by the thermometer and pressure gauge which were installed in the ground (5.0 m), and the tip resistances were measured by static electronic piezo-cone penetration test (CPT). As the results of experiments, 2-order polynomial curve was shown to adjust the variation of tip resistance and the temperature distribution with the horizontal distance from electric heater, whose R2 value is close to 1. In addition, in-situ pore-water pressure and water content was decreased.

A Study on Simulation of Cavity and Relaxation Zone Using Finite Element Method (유한요소법을 이용한 지반 공동 및 이완영역 모사에 관한 연구)

  • You, Seung-Kyong;Kim, Joo-Bong;Han, Jung-Geun;Hong, Gi-Gwon;Yun, Jung-Mann;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.67-74
    • /
    • 2017
  • In order to prevent the ground subsidence accidents caused by the occurrence of underground cavity, it is necessary to evaluate the mechanical characteristics in the relaxation zone of the underground cavity. Also, the relaxation zone including underground cavity be appropriately reinforced. This paper described analysis results based on finite element method that was conducted to analyze the mechanism for occurrence of the relaxation zone around the underground cavity. The finite element analysis applied in forced displacement was carried out to simulate the underground cavity and relaxation zone, and then there were compared with previous research results. The analysis results showed that the void distribution of soil around the underground cavity has figured out. As a result, the area of the relaxation zone could be quantitatively presented by reduction characteristics of the shear stress.

Stability Analysis of Unsaturated Soil Slope by Coupled Hydro-mechanical Model Considering Air Flow (공기흐름을 고려한 수리-역학적 연동모델에 의한 불포화 토사사면의 안정해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.1
    • /
    • pp.19-33
    • /
    • 2016
  • Stability analysis based on the limit equilibrium method combined with the result of infiltration analysis is commonly used to evaluate the effect of rainfall infiltration on the slope stability. Soil is a three-phase mixture composed of solid particle, water and air. Therefore, a fully coupled mixture theories of stress-deformation behavior and the flow of water and air should be used to accurately analyze the process of rainfall infiltration through soil slope. The purpose of this study is to study the effect of interaction of air and water flow on the mechanical stability of slope. In this study, stability analyses based on the coupled hydro-mechanical model of three-phases were conducted for slope of weathered granite soil widespread in Korea. During the process of hydro-mechanical analysis strength reduction technique was applied to evaluate the effect of rainfall infiltration on the slope stability. The results showed an increase of air pressure during infiltration because rain water continuously displaced the air in the unsaturated zone. Such water-air interaction in the pore space of soil affects the stress-deformation behavior of slope. Therefore, the results from the three-phase model showed different behavior from the solid-water model that ignores the transport effect of air in the pores.

Control effects of the hydrodynamic force of twin rudder in a uniform stream (균일 흐름중에 놓인 쌍동타의 간격변화가 유체력 제어효과에 미치는 영향)

  • Shon, Chang-Bae;Oh, Woo-Jun;Ku, Youn-Kyoung;Gim, Ok-Sok;Lee, Gyoung-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.387-388
    • /
    • 2010
  • An open water rudder test was carried out to figure out the flow characteristics around a twin rudder at $Re=1.5\times10^4$. In the analysis, the unique characteristics of a twin rudder, which effects rudder farces, were explained. The analysis is included varying angles of attack fram 10 to 30 degree. In this paper, the measured results has been compared with each other to predict the performance characteristics of a twin rudder's 2-dimensional section by 2-frame grey level cross correlation PIV method. The side force of the rudder could be mainly improved at 0.75L.

  • PDF

Study on Consolidation Behaviors of Soft Ground by Plastic Board Drain Using Model Tests (실내모형실험에 의한 Plastic Board Drain이 적용된 연약지반의 압밀거동에 관한 연구)

  • You, Seung-Kyong;Hong, Won-Pyo;Yoon, Gil-Lim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.4
    • /
    • pp.17-23
    • /
    • 2003
  • Accurate prediction of consolidation behaviors of the soft ground improved by plastic board drains is not easy because the consolidation characteristics of the improved ground has not been fully elucidated yet. The shape of drains is one of the most important factors which affect the consolidation characteristics of the improved ground. In this paper, a series of model consolidation tests of soft clay ground improved by plastic board drain were carried out, in order to investigate the effect of both plastic board width and stress level on consolidation characteristics of the improved ground. As the results, behaviors of both settlement and excess pore pressure dissipation were elucidated. Also, the non-uniform distribution of water content in the model ground was obtained. Then, in order to investigate the effect of vertical drainage on the consolidation behavior in the model tests, the comparison between experimental consolidation behaviors and Barron's theoretical ones were carried out. As the results, it was elucidated that the consolidation behavior in the model tests was affected not only by radial drainage but also by vertical drainage.

  • PDF

Seepage Behavior of Sea Dyke Final Closure with Installation of Bottom Protection Filter Mat (근고공 필터매트 설치에 따른 방조제 끝막이구간의 침투거동)

  • Oh, Young-In;Yoo, Jeon-Yong;Kim, Hyun-Tae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.1
    • /
    • pp.25-32
    • /
    • 2006
  • Sea dyke construction is simply defined as a cutting procedure of sea water flow. Sea dyke construction is more difficult than in-land construction because it is placed on deep seabed and exposed sea wave attack. Especially, the final closure of sea dyke is most dangerous due to the fast velocity of tidal flow. The final closure is consisted with vast rubble and heavy stone gabion, therefore the discharge velocity at land side of final close section is irregularly and sometime occur the fast discharge velocity. In this paper, the seepage model test performed to evaluate seepage behavior of final closure and continuous sea dyke section such as discharge velocity, hydraulic gradient, and phreatic line with installation of bottom protection filter mat. Based on the seepage model test results, the maximum discharge velocity of final closure section is 1.7m/sec and the discharge velocity is decreased maximum 23.7% with installation of bottom protection filter mat.

  • PDF

Sensitivity of Seepage Behavior of Dam to Unsaturated Soil Properties (불포화 수리특성에 대한 댐체 침투 거동의 민감도 분석)

  • Cho Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.119-131
    • /
    • 2005
  • Seepage analysis through unsaturated zone based on the theory of unsaturated flow is commonly performed to evaluate dam safety. However, the concepts of unsaturated soil behavior have not been transferred into the hands of practicing geotechnical engineers since the problems involving unsaturated soils often have the appearances of being extremely complex. The behavior of dam such as seepage rate and the pore water pressure distribution is different according to the unsaturated hydraulic properties, but nevertheless simply assumed properties have been used due to insufficient data from domestic soils. In this paper, the effect of unsaturated hydraulic properties on the behavior of dam was studied through a series of numerical analyses, and then the results were discussed. It is observed that water table moves at a (aster rate, as the values of unsaturated soil parameter a and n increase. The value of m showed opposite trend. The sensitivity calculated using the approximation form showed maximum values near the water table. And the value of n that is related to the slope of soil water characteristic curve gives greatest influence on the change of sensitivity with time.