• Title/Summary/Keyword: 각막곡률반경

Search Result 33, Processing Time 0.027 seconds

Study in Radius of Corneal Curvature of university Students with Keratometer (RGP 렌즈 착용한 대학생의 각막곡률반경 측정)

  • Kim, Chang-Sik;Ryu, Kwang-Min
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.3
    • /
    • pp.181-185
    • /
    • 2006
  • The measurement of the radius of corneal curvature with keratometer was followed in 184 university students who wearing RGP contact lens and consisted of female(167), male(17) and keratoconus patients(3). Overall mean value in the radius of corneal curvature is 7.77mm, and right and left eyes is appeared the same mean value. Overall mean value in horizontal and vertical is 7.88mm and 7.65mm. Horizontal means is larger than vertical means by 0.22mm of the all female and male students. Male's mean value in the radius of corneal curvature(7.84mm) is larger than female's by 0.08mm, and right and left eyes is also the same mean value. Keratoconus patients' mean value in the radius of corneal curvature(6.86mm) is smaller than others students by 0.91mm.

  • PDF

The Study about Measuring Method in Radius of Eyeglasses Lens Curvature by using Keratometer (각막곡률계를 이용한 안경렌즈 곡률반경 측정방법에 관한 연구)

  • Cha, Jung Won
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.2
    • /
    • pp.127-133
    • /
    • 2012
  • Perpose: The aim of this study is to investigate the measuring method in radius of eyeglasses lens curvature by using keratometer in noncontact method. Methods: A trial lens for vision test in diopter range from -9.00 D to -11.50 D were attached in front part of keratometer, after that we set eyeglasses lens at the place where eyeglasses lens is apart about 25 cm from front position of keratometer. We measured the radius of curvature from observation of clear mire image while the position of eyeglasses lens is changed in a small quantity. After that, we made some formulas for compensation of radius of curvature by using spherometer. Results: The radius of curvature was successfully measured by keratometer with trial lens in front part of it. The measured radius of curvature was changed to compensation value using spherometer data, and the 5 kind of linear equation to make compensation value was made. Any kind of lenses measured by using keratometer that trial lens was attached in front part of it, after that it was confirmed that the result of calculation from line equation is exact in error ratio below 3.5%. Conclusions: It was confirmed that radius of eyeglasses lens curvature can be measured by using keratometer by noncontact method, and the accuracy is higher than "lens measure".

Mathematical Expression of the Toric Cornea using Corneal Topography Measurements (각막지형도(topography) 각막곡률로부터 토릭 각막형상의 수식화)

  • Kim, Dae Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.4
    • /
    • pp.439-444
    • /
    • 2011
  • Purpose: To represent the shape of toric corea in the elliptical function for the determination of curvature distribution and lacrimal thickness between cornea and contact lens when the lens is fitted. Methods: Topography measurements of corneal curvature and curvature equation derived from the assumed elliptical function were evaluated using the Excel program which included the necessary equation derived. Results: Mathematical expressions for the cornea whose ribbon shaped-topography image, in which the center does not coincide with the corneal apex, can be determined. Conclusions: For the application where the higher accuracy on the cornea is not required, such as higher order aberration, the cornea cal be expressed in the simple elliptical function.

The Analysis of Corneal Patterns in Korean 20s by Corneal Topography and Corneal Radii by Astigmatic Degree (각막지형도를 이용한 20대의 각막형상 및 난시도에 따른 각막곡률반경의 분석)

  • Kim, So Ra;Gil, Ji-Yeon;Park, Chang Won;Kim, Ji Hye;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.3
    • /
    • pp.273-281
    • /
    • 2011
  • Purpose: In order to provide the fundamental information for the design development of RGP lenses and its clinical prescription, the corneal types of Korean twenties were analyzed according to corneal shapes, astigmatic degree, and the certain distance from the corneal apex. Methods: Corneal types of total 252 eyes in 20s were firstly classified, then their corneal radii from the certain distance from the corneal apex were measured by corneal topography and further analyzed based on the astigmatic degree. Results: Korean 20s' corneal types were classified as 14.3%(36 eyes) of round, 31.3%(79 eyes) of oval, 28.6%(72 eyes) of symmetric bow tie, 17.5%(44 eyes) of asymmetric bow tie, 8.3%(21 eyes) of irregular shapes. The round and oval typed corneas had mild astigmatic degree whereas the higher astigmatic degree in symmetric and asymmetric bow tie typed corneas were shown. The relative corneal radii of round and oval typed corneas at each distance from corneal apex were shown to consistently increase regardless of astigmatic degrees when they measured at certain distances from the corneal apex. However, the relative corneal radii of symmetric and asymmetric bow tie typed corneas within 1.0-1.5mm from the corneal apex were decreased, which showed steeper slope than it within 1.0 mm and somewhat different based on astigmatic degrees. Bigger change of corneal radii outer 3.5 mm from the corneal apex in symmetric bow tie typed corneas with astigmatism of 1.50-2.00 D and 2.25-2.75 D appeared. Conclusions: The consideration of radial change from the central cornea to peripheral cornea is necessary for manufacturing RGP lens and its prescription since they showed different change in corneal radii by corneal patterns and astigmatic degrees.

Study of the cornea characteristics using Oculus Pentacam (Oculus Pentacam을 사용한 각막 특성 분석)

  • Lee, Jeung-Young;Park, Eun-Kyoo
    • Journal of the Korea society of information convergence
    • /
    • v.6 no.1
    • /
    • pp.37-41
    • /
    • 2013
  • In this study, by using the Oculus Pentacam, we analyzed the relationship of corneal front astigmatism corneal and the radius of curvature of the rear face of the 20's to 40's. The vertical radius of curvature were man 7.94mm (${\pm}0.22$), women 7.87mm (${\pm}0.21$), the horizontal radius of the anterior corneal appeared man 7.69mm (${\pm}0.27$), women 7.63mm(${\pm}0.23$). And rear vertical radius of curvature were man 6.52mm(${\pm}0.23$), woman 6.55mm (${\pm}0.22$), the horizontal radius of the anterior corneal appeared man 6.06mm (${\pm}0.24$), woman 6.08mm(${\pm}0.24$). The results of correlation analysis between the radius of corneal posterior surface and the anterior corneal surface, it was found out that there is a significant correlation. In this study, similar results were obtained anterior surface of the cornea, the radius of curvature of the rear surface, the refractive power, and astigmatism, as other papers that have been reported. But in this paper, the cornea thickness was thicker than other previously reported paper.

  • PDF

Study of the Axial Length/Corneal Radius Ratio in Determining the Refractive State of the Eye (굴절이상과 안축장/각막곡률반경 비와의 관계에 관한 연구)

  • Seo, Y.W.;Choe, Y.J.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.2
    • /
    • pp.23-31
    • /
    • 1999
  • The purpose of this study is to evaluate the relationship between axial length/corneal radius ratio and refractive error for human eye. Ocular components were measured Baush & Lomb keratometer, Holden-Payor pachometer, and Stoz Compuscan. Refractive error was measured by subjective refraction. The results were as follows; 1) Spherical equivalent refractive error and axial length/corneal radius ratio was very highly correlated with the correlation coefficient for -0.89. 2) Axial length/corneal radius ratio and axial length, vitreous chamber depth were highly correlated that the correlation coefficients were 0.82, 0.80 respectively. 3) Axial length/corneal radius ratio and anterior chamber depth, corneal power, corneal radius, lens power were correlated with the correlation coefficients for 0.57, 0.40, -0.39, -0.35 respectively. 4) There were no significant correlation between axial length/corneal radius ratio and lens thickness, and corneal thickness.

  • PDF

The Correlation of Refractive Error and Ocular Dimensions in Older Age (고령의 연령에서 굴절이상과 안광학 성분들의 연관성 분석)

  • Lim, Byung Kwan;Jeon, Soon-Woo;Jeong, Youn Hong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.3
    • /
    • pp.293-297
    • /
    • 2011
  • Purpose: This study was to know the correlation among refractive error and the dimensions of ocular components on older adults. Methods: The subjects were 95 older age who had no eye diseases. The refractive error, corneal radius, corneal diopter, axial length, anterior chamber depth and lens thickness were measured and analysed. Results: The axial length(AL)/corneal radius(CR) ratio was positively correlated with the corneal diopter, axial length, the anterior chamber depth. Then it was negatively correlated with corneal radius. It was shown that the highest correlation was between the corneal diopter and axial length (r = -0.545, p = 0.000). The spherical equivalent of the refractive error was negatively correlated with the AL/CR ratio. Conclusions: It was shown that the AL/CR ratio was a very important indicator for diagnosing the refractive error of the old age.

A Comparison of Refractive Components in Anisometropia and Isometropia (굴절부등안과 동등안의 양안 굴절요소 차이 비교)

  • Shim, Hyun-Seog;Shim, Jun-Beom;Kim, Eun-Suck
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.2
    • /
    • pp.187-193
    • /
    • 2011
  • Purpose: This study was to compare differences between both eyes in corneal powers, axial lengths, anterior chamber depths in anisometropia and isometropia, and to investigate the relationship between anisometropia and refractive components. Methods: The subject was a total of 83 patients, anisometropia 45 patients (90 eyes) and isometropia 38 patients (76 eyes) from 2.7 to 15.3 years old, prescribed eyeglasses and contact lenses by refraction from July 2010 to August 2010 in Gwangju City B eye clinic. Axial length, anterior chamber depth, corneal curvature, and corneal refractive power were measured using IOL Master. Refractive error was measured using an Auto-refractometer. Results: Anisometropia was a statistically significant difference in axial length, binocular refractive components, refractive error, and axial length, Axial length/corneal radius (AL/CR) ratio showed a statistically significant difference in anisometropia and isometropia. The major cause of anisometropia all 45 subjects was the axial length. Among the refractive components axial length, AL/CR had a strong correlation, but corneal refractive power had no correlation. Anterior chamber depth had a weak correlation. Conclusions: This study found that refractive error was the most axial ametropia caused by the axial length. The main cause of anisometropia was the axial length, but refractive components had a weak correlation.

Study of the Correlation and Ocular Components in Preschool Children (취학전 어린이들의 안광학 성분 측정 및 상관성 분석)

  • Jeon, Soon-Woo;Hwang, Hye-Kyung;Lee, Sun Haeng;Park, Chun-Man
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.3
    • /
    • pp.201-206
    • /
    • 2010
  • Purpose: This study was to know the correlation among the dimensions of ocular components and refractive error on kindergarten children. Methods: The subjects were 80 preschool students who had no eye diseases. The refraction, corneal diopter, corneal radius, inter-pupillary distance, axial length, anterior chamber depth and dominant eye were measured and analysed. Results: It was shown that the highest correlation was between the axial length and the corneal diopter (r=-0.674, p=0.000). The ratio of height, weight and axial length (AL) to Corneal radius (CR) ratio were positively correlated with the axial length (r=0.351, r=0.408, r=0.488). The spherical equivalent of the refractive error and the corneal diopter were negatively correlated with the axial length (r=-0.302, r=-0.674). The anterior chamber depth and the corneal diopter were positively correlated with the AL/CR ratio (r=0.422, r=0.280). The spherical equivalent of the refractive error and the corneal radius were negatively correlated with the AL/CR ratio. Conclusions: It was shown that the AL/CR ratio was a very important indicator for diagnosing the refractive error of the preschoolers.

Study on Distribution and Change of Curvature of the Anterior Corneal Surface with each Age in Emmetropia (정시안의 연령별 각막전면곡률 변화와 분포에 관한 연구)

  • Kim, Chan-Soo;Sung, A-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.2
    • /
    • pp.211-221
    • /
    • 2004
  • The purpose of this study is to evaluate the distribution and change of curvature of the anterior corneal surface with age in emmetropia. 504 subjects who have emmetroia with good naked vision of at least 0.6-1.0 (spherical equivalent: +0.75D- -0.75D) participated in this study. The 504 subjects into 8 groups with 10 year interval from 3-year to 83-year, and their corneal curvatures were analyzed using manual keratometry. The results are as follows. In individual analysis: First, regression analysis of corneal curvature radius with age has given an equation: Y = -0.003x + 7.796 (r = -0.26). The average corneal curvature radii was measured to be $7.68{\pm}0.25mm$ at 38.3-year and range was 6.98-8.54 mm. Second, frequency of corneal curvature radius were obtained in 36% between 7.61 and 7.80 mm, 78% between 7.41 and 8.00 mm, 96% between 7.21 and 8.20 mm, 100% between 6.98 and 8.54 mm. Third, as for the comparison of corneal curvature radius with respect to sex, The mean value of male (n = 304, mean: 37.6-year $7.72{\pm}0.24mm$, Range: 7.09-8.54 mm) is larger than that of female (n = 200, mean: 39.3-year $7.62{\pm}0.24mm$, Range: 6.98-8.42 mm) by 0.1mm (p<0.01). In groups analysis: First, regression analysis of corneal curvature radius with age has given an equation: $Y=-0.0066x^2+0.0227x+7.7282$ (r = -0.90). Second, vertical and horizontal curvature radius decreased with age (p < 0.01). Especially the decrease of horizontal curvature radius were more pronounced than the decrease of vertical (horizontal:10-70 age group: 0.38 mm decrease, vertical:10-70 age group: 0.20 mm decrease). Third, difference between steep and flat meridian (astigmatism) progressively decreased with age. (low age group:0.18 mm difference, high age group: 0.08 mm difference). Fourth, the corneal curvature radius of male was larger than female's in total groups(p < 0.01). Consequently, the change of corneal curvature radius with age progressively decreased in all conditions (mean, vertical, horizontal, male, and female) and this change was more outstanding in horizontal rather than in vertical.

  • PDF