• 제목/요약/키워드: 가중선형모형

검색결과 54건 처리시간 0.025초

SWAT 모형의 유출해석모듈 개선이 수질모의에 미치는 영향 (Effect of Improved Runoff Module in SWAT on Water Quality Simulation)

  • 김남원;신아현;이정우
    • 한국수자원학회논문집
    • /
    • 제42권4호
    • /
    • pp.297-307
    • /
    • 2009
  • 신뢰도 높은 수질 모의를 위해서는 유역 내 정확한 유출 모의가 반드시 선행되어야 한다. 본 연구에서는 연속방정식과 운동파 근사에 의한 Manning의 식이 결합된 비선형 저류방정식에 근거한 하도추적법과 금일 강수량을 고려하여 시간적으로 가중 평균된 유출곡선지수를 산정하도록 개선된 지표유출계산 모듈이 수질 모의에 미치는 영향을 분석하였다. 이를 대표적 준분포형 모형인 SWAT에 탑재하여 충주댐 유역에 적용하여 각 개선모듈별 독립적인 분석과 전체 개선의 효과를 개선 전 후로 분석하였다. 각 개선 모듈별 수질 모의의 기여도를 분석한 결과 지표유출계산 모듈의 개선보다는 하도추적의 개선이 더 많은 영향을 미치는 것으로 분석되었다. 이는 비점오염원의 특성 상 하도추적의 개선으로 인한 유출 지체 현상의 개선이 부하량의 배출에 가장 큰 요인으로 작용하였기 때문이라고 판단된다.

신경망 모형을 이용한 결측 강우 자료 추정방법의 적용성 연구 (Applicability of Missing Rainfall Data Estimation using Artificial Neural Networks)

  • 조혜린;박희성;김형섭
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.512-512
    • /
    • 2015
  • 시 공간적 관측에서 다양한 원인에 의해 강우 자료에 결측이나 오측이 발생할 수 있다. 강우를 측정하고 자료를 수집 관리하는 측면에서 결측 되거나 오측된 자료를 추정 보완할 필요가 있다. 현재까지 결측 강우 자료를 추정하기 위한 방법으로 결측 지점 인근의 관측소를 이용한 단순 가중 평균치 방법에서부터 복잡한 통계적 기반의 보간 방법에 이르기까지 많은 연구들이 진행되고있다. 본 연구에서는 결측 된 강우 자료를 추정하기 위해 인공 신경망을 이용하여 모형을 구축하고 주변 관측소의 강우자료를 이용해 신경망 학습을 실시하여 적용해 보았으며, 최근 관측의 단위가 짧아지고 있는 점을 고려하여 10분, 30분, 1시간 등 다양한 시간간격의 강우자료를 구축하고 선형회귀모형과 RDS 방법, 신경망 모형을 이용한 방법 등을 적용한 결과를 비교하여 신경망 모형의 적용성을 살펴보았다. 단순한 구조면에서는 기존의 RDS 방법에 대한 적용성이 높은 것으로 판단되었으나, 성능의 개선을 위한 별다른 방법이 없는 반면 신경망 모형은 입력 자료를 다양하게 변환하여 구성하는 경우 성능을 개선하여 적용성이 더 높아 질 수 있는 것으로 판단되었다. 향후 신경망 모형을 이용해 잘못 측정된 강우를 적절히 선별하고 결측된 보완함으로써 관측된 강우 자료의 활용성을 높일 수 있을 것이다.

  • PDF

중심합성계획 시뮬레이션 실험에서 공통난수의 활용 (Application of Common Random Numbers in Simulation Experiments Using Central Composite Design)

  • 권치명
    • 한국시뮬레이션학회논문지
    • /
    • 제23권3호
    • /
    • pp.11-17
    • /
    • 2014
  • 중심합성계획(CCD)은 2차 선형 모형을 추정하기 위해서 자주 활용된다. 본 연구는 CCD를 활용하는 시뮬레이션 실험에서 공통난수(CRN) 상관유도전략을 사용하여 모형의 파라미터를 효율적으로 추정하고자 한다. CCD의 축점을 적절히 선택하면 모든 표본점에 공통난수를 할당하는 전략으로 얻은 파라미터의 가중최소자승(WLS) 추정량은 정규최소자승(OLS) 추정량과 일치한다. 본 연구는 선형모형의 파라미터를 추정하는 공통난수 상관유도전략이 파라미터 추정 효율성 측면에서 독립 난수 할당전략보다 우수함을 계량적으로 분석하였다. 2차 선형모형에서 상수항을 제외한 나머지 파라미터를 추정하는데 있어서 공통난수 상관유도전략이 우수하며 시뮬레이션 결과도 이러한 분석을 지지하고 있다. 제안된 난수 할당전략이 CCD 시뮬레이션 실험에서 유용하게 활용될 수 있을 것으로 기대한다.

측방유입량을 고려한 낙동강 유역의 머스킹검 매개변수 추정 (The estimation of parameter using muskingum model in nak-dong river basin incorporating lateral inflow)

  • 정찬용;정영훈;김형섭;정성원;정관수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.2270-2275
    • /
    • 2008
  • 수문학적 하도추적법의 하나인 Muskingum 모형은 미 육군공병단(U.S. Army Corps of Engineers)에 의해서 미국 Ohio 주의 Muskingum 유역에 홍수조절계획으로 처음 사용되었으며 모형의 구조 및 입력자료의 단순성에 비하여 비교적 우수한 결과를 모의할 수 있는 것으로 알려져 있다. 1938년 McCarthy에 의해서 개발되었고 구간내 총저류량은 prism 저류와 wedge 저류로 구분하여 prism 저류는 유출량에 wedge 저류는 유입량과 유출량의 차에 직접 비례한다는 가정하에 추적식을 개발하였다. 이후 지속적인 연구가 이뤄져 1985년 O'Donnel은 측방유입량(lateral inflow)을 상류단의 유입량에 비례하는 형태로 3-매개변수 muskingum 모형을 제안하여 추적계수의 결정을 선형대수(linear algebra)에서 동차(homogeneous)연립방정식 해를 구하는 Cramer 법칙인 matrix 기법을 적용하였다. 본 연구에서는 홍수사상으로부터 측방유입량이 고려되고 추적계수 결정에 있어서 직접 계산이 가능한 O'Donnel(1985)이 제안한 3-매개변수 muskingum 모형을 적용하였다. 추적계수들의 결정은 직접 matrix 기법을 적용하였고 적용대상은 낙동강 유역의 낙동 지점을 상류단으로 구미 지점을 하류단으로 선정하였다. 홍수사상은 낙동강 유량측정 조사사업 2005년${\sim}$2007년 보고서에 수록된 수문자료를 선정하여 관측치와 계산치를 비교하였고 홍수사상에 적용하여 수문곡선을 추정하였으며, 각각의 매개변수가 추적구간에 어떠한 영향을 미치는지 변수간의 관계를 분석하였다. 또한, 관측치와 계산치의 적합도 검증은 평균제곱근오차(root mean squar error; RMSE)와 모형 효율성 계수(model efficiency; ME)를 산정하여 분석하였으며, 하도 구간내 저류량은 대상구간에 대한 유입량과 유출량의 가중합에 비례한다는 선형모형을 적용하였다.

  • PDF

소표본에서 차이측도 통계량의 비교연구 (A Monte Carlo Comparison of the Small Sample Behavior of Disparity Measures)

  • 홍종선;정동빈;박용석
    • 응용통계연구
    • /
    • 제16권2호
    • /
    • pp.455-467
    • /
    • 2003
  • 소표본 분할표 자료에서 적합도 검정통계량들의 카이제곱 근사 적용 가능에 대하여 많은 연구가 진행되었다. 소표본에서 세 가지 검정 통계량(피어슨 카이제곱 Χ$^2$, 일반화 가능도비 G$^2$, 그리고 역발산 Ι(2/3) 검정통계량)에 관하여 비교한 Rudas(1986)의 연구를 확장하여, 최근에 제안된 차이측도(BWHD(1/9), BWCS(1/3), NED(4/3) 검정통계량)를 포함시켜 비교 분석하였다. 독립모형의 이차원 분할표, 조건부 독립모형과 한 변수 독립 모형을 따르는 삼차원 분할표에 대한 모의실험을 통하여 생성된 90과 95 백분위수와 이에 대응하는 95% 신뢰구간을 살펴보고 실제 백분위수와 비교하였다. 그 결과 Χ$^2$, Ι(2/3), 그리고 BWHD(1/9) 검정통계량이 유사한 결과를 나타내었고 이 통계량들이 기존에 제안된 검정통계량들보다 적은 표본크기에서도 카이제곱 근사방법에 적용 가능함을 발견하였다.

Meta-Heuristic Algorithms를 이용한 확률분포의 매개변수 추정 (Parameters Estimation of Probability Distributions Using Meta-Heuristic Algorithms)

  • 윤석민;이태삼;강명국;정창삼
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.464-464
    • /
    • 2012
  • 수문분야에 있어서 빈도해석의 목적은 특정 재현기간에 대한 발생 가능한 수문량의 규모를 파악하는데 있으며, 빈도해석의 정확도는 적합한 확률분포모형의 선택과 매개변수 추정방법에 의존하게 된다. 일반적으로 각 확률분포모형의 특성을 대표하는 매개변수를 추정하기 위해서는 모멘트 방법, 확률가중 모멘트 방법, 최대우도법 등을 이용하게 된다. 모멘트 방법에 의한 매개변수 추정은 해를 구하기 위한 과정이 단순한 반면, 비대칭형의 왜곡된 분포를 갖는 자료들에 대해서는 부정확한 결과를 나타내게 된다. 확률가중 모멘트 방법은 표본의 크기가 작거나 왜곡된 자료일 경우에도 비교적 안정적인 결과를 제공하는 반면, 확률 가중치가 정수로만 제한되는 단점을 갖고 있다. 그리고 대수 우도함수를 이용하여 매개변수를 추정하게 되는 최우도법은 가장 효율적인 매개변수 추정치를 얻을 수 있는 것으로 알려져 있으나, 비선형 연립방정식으로 표현되는 해를 구하기 위해서는 Newton-Raphson 방법을 사용하는 등 절차가 복잡하며, 때로는 수렴이 되지 않아 해룰 구하지 못하는 경우가 발생되게 된다. 이에 반해, 최근의 Genetic Algorithm, Ant Colony Optimization 및 Simulated Annealing과 같은 Meta-Heuristic Algorithm들은 복잡합 공학적 최적화 문제 있어서 효율적인 대안으로 주목받고 있으며, Hassanzadeh et al.(2011)에 의해 수문학적 빈도해석을 위한 매개변수 추정에 있어서도 그 적용성이 검증된바 있다. 본 연구의 목적은 연 최대강수 자료의 빈도해석에 적용되는 확률분포모형들의 매개변수 추정을 위해 Meta-Heuristic Algorithm을 적용하고자 함에 있다. 따라서 본 연구에서는 매개변수 추정을 위한 방법으로 Genetic Algorithm 및 Harmony Search를 적용하였고, 그 결과를 최우도법에 의한 결과와 비교하였다. GEV 분포를 이용하여 Simulation Test를 수행한 결과 Genetic Algorithm을 이용하여 추정된 매개변수들은 최우도법에 의한 결과들과 비교적 유사한 분포를 나타내었으나 과도한 계산시간이 요구되는 것으로 나타났다. 하지만 Harmony Search를 이용하여 추정된 매개변수들은 최우도법에 의한 결과들과 유사한 분포를 나타내었을 뿐만 아니라 계산시간 또한 매우 짧은 것으로 나타났다. 또한 국내 74개소의 강우관측소 자료와 Gamma, Log-normal, GEV 및 Gumbel 분포를 이용한 실증연구에 있어서도 Harmony Search를 이용한 매개변수 추정은 효율적인 매개 변수 추정치를 제공하는 것으로 나타났다.

  • PDF

대형 데이터에서 VIF회귀를 이용한 신속 강건 변수선택법 (Fast robust variable selection using VIF regression in large datasets)

  • 서한손
    • 응용통계연구
    • /
    • 제31권4호
    • /
    • pp.463-473
    • /
    • 2018
  • 연구에서는 선형회귀모형을 가정한 대형 데이터에서의 변수선택 알고리즘을 다룬다. 방법의 속도와 강건성에 주안점을 둔 여러 알고리즘들이 제안되었다. 그 중에서 streamwise 회귀 접근법을 사용한 VIF회귀는 신속하고 정확하게 수행된다. 그러나 VIF회귀는 최소제곱방법에 의해 모형이 추정되므로 이상치에 민감하다. 변수선택방법의 강건성을 높이기 위해 가중 추정치를 사용한 강건측도가 제안되었으며 강건 VIF회귀도 제안되었다. 본 연구에서는 잠재적 이상치를 탐지하여 제거한 후 VIF회귀를 수행하는, 빠르고 강건한 변수선택 방법을 제안한다. 제안된 방법은 모의실험과 데이터 분석 통해 다른 방법들과 비교된다.

HLLC Approximate Riemann Solver를 이용한 천수방정식 해석 (Analysis of Shallow-Water Equations with HLLC Approximate Riemann Solver)

  • 김대홍;조용식
    • 한국수자원학회논문집
    • /
    • 제37권10호
    • /
    • pp.845-855
    • /
    • 2004
  • 본 연구에서는 수치모형을 이용하여 근해지진해일의 처오름 현상과 전파양상을 이용하여 해석하였다. 모의에 사용된 수치모형은 지진해일 거동의 해석에 적합한 비선형 천수방정식을 지배방정식으로 채택하였으며, 유한체적법을 이용하여 해석영역을 이산화 하였고 Riemann 문제를 해석하기 위하여 HLLC approximate Riemann solver와 Weighted Averaged Flux 기법을 이용하였다. 수치모형의 검증을 위하여 마찰 없는 수조에서의 수면진동문제와 원형섬 주위에서 고립파의 진행과 처오름에 대한 문제에 적용하여 각각 해석해 및 실험결과와 비교하였다. 수치모형에 의한 결과는 해석해와 수리모형실험 관측자료와 잘 일치하였다.

다항시행접근 단순 베이지안 문서분류기의 개선 (Improving Multinomial Naive Bayes Text Classifier)

  • 김상범;임해창
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권3_4호
    • /
    • pp.259-267
    • /
    • 2003
  • 단순 베이지언 분류모형은 구현이 간단하고 효율적이기 때문에 실용적으로 사용하기에 적합하다. 그러나 이 분류모형은 많은 기계학습 도메인에서 우수한 성능을 보임에도 불구하고 문서분류에 적용되었을 경우에는 그 성능이 매우 낮은 것으로 알려져왔다. 본 논문에서는 단순 베이지언 분류모형중 가장 성능이 우수한 것으로 알려진 다항 시행접근 단순 베이지언 분류모형을 개선하는 세가지 방법을 제안한다. 첫 번째는 범주에 대한 단어의 확률추정방법을 문서모델에 기반하여 개선하는 것이고, 두 번째는 문서의 길이에 따라 범주와의 관련성이 선형적으로 증가하는 것을 억제하기 위해 길이에 대한 정규화를 수행하는 것이며, 마지막으로 범주판정에 중요한 역할을 하는 단어들의 영향력을 높여주기 위하여 상호정보가중 단순 베이지언 분류방법을 사용하는 것이다. 제안하는 방법들은 문서분류기의 성능 평가를 위한 벤치마크 문서집합인 Reuters21578과 20Newsgroup에서 기존의 방범에 비해 상당한 성능향상을 가져옴을 알 수 있었다.

하천에 유입된 유해화학물질의 역추적을 위한 기계학습 프레임워크 개발 (Development of machine learning framework to inverse-track a contaminant source of hazardous chemicals in rivers)

  • 권시윤;서일원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.112-112
    • /
    • 2020
  • 하천에서 유해화학물질 유입 사고 발생 시 수환경 피해를 최소화하기 위해 신속한 초기 대응이 필요하다. 따라서, 본 연구에서는 수환경 화학사고 대응 시스템 구축을 위해 하천 실시간 모니터링 지점에서 관측된 유해화학물질의 농도 자료를 이용하여 발생원의 유입 지점과 유입량을 역추적하는 프레임워크를 개발하였다. 본 연구에서 제시하는 프레임워크는 첫 번째로 하천 저장대 모형(Transient Storage Zone Model; TSM)과 HEC-RAS 모형을 이용하여 다양한 유량의 수리 조건에서 화학사고 시나리오를 생성하는 단계, 두번째로 생성된 시나리오의 유입 지점과 유입량에 대한 시간-농도 곡선 (BreakThrough Curve; BTC)을 21개의 곡선특징 (BTC feature)으로 추출하는 단계, 최종적으로 재귀적 특징 선택법(Recursive Feature Elimination; RFE)을 이용하여 의사결정나무 모형, 랜덤포레스트 모형, Xgboost 모형, 선형 서포트 벡터 머신, 커널 서포트 벡터 머신 그리고 Ridge 모형에 대한 모형별 주요 특징을 학습하고 성능을 비교하여 각각 유입 위치와 유입 질량 예측에 대한 최적 모형 및 특징 조합을 제시하는 단계로 구축하였다. 또한, 현장 적용성 제고를 위해 시간-농도 곡선을 2가지 경우 (Whole BTC와 Fractured BTC)로 가정하여 기계학습 모형을 학습시켜 모의결과를 비교하였다. 제시된 프레임워크의 검증을 위해서 낙동강 지류인 감천에 적용하여 모형을 구축하고 시나리오 자료 기반 검증과 Rhodamine WT를 이용한 추적자 실험자료를 이용한 검증을 수행하였다. 기계학습 모형들의 비교 검증 결과, 각 모형은 가중항 기반과 불순도 감소량 기반 특징 중요도 산출 방식에 따라 주요 특징이 상이하게 산출되었으며, 전체 시간-농도 곡선 (WBTC)과 부분 시간-농도 곡선 (FBTC)별 최적 모형도 다르게 산출되었다. 유입 위치 정확도 및 유입 질량 예측에 대한 R2는 대부분의 모형이 90% 이상의 우수한 결과를 나타냈다.

  • PDF