• Title/Summary/Keyword: 가중선형모형

Search Result 54, Processing Time 0.029 seconds

Effect of Improved Runoff Module in SWAT on Water Quality Simulation (SWAT 모형의 유출해석모듈 개선이 수질모의에 미치는 영향)

  • Kim, Nam-Won;Shin, Ah-Hyun;Lee, Jeong-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.4
    • /
    • pp.297-307
    • /
    • 2009
  • For reliable water quality simulation by semi distributed model, accurate daily runoff simulation should have preceded. In this study, newly developed channel routing method which is nonlinear storage method is combination of Muskingum routing method and variable storage routing method and temporally weighted average curve number method were applied for effect analysis of water quality simulation. Developed modules, which are added in SWAT models and simulation, were conducted for the Chungju dam watershed. The simulation result by each module applied effect. As a result of analysis contribute water quality modeling, nonlinear storage method is more effective than temporally weighted average curve number method. Nutrient loading discharge was affected by development of runoff delaying from improvement of channel routing, because of characteristics of nonpoint source pollution.

Applicability of Missing Rainfall Data Estimation using Artificial Neural Networks (신경망 모형을 이용한 결측 강우 자료 추정방법의 적용성 연구)

  • Cho, Herin;Park, Hee-Seong;Kim, Hyoungseop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.512-512
    • /
    • 2015
  • 시 공간적 관측에서 다양한 원인에 의해 강우 자료에 결측이나 오측이 발생할 수 있다. 강우를 측정하고 자료를 수집 관리하는 측면에서 결측 되거나 오측된 자료를 추정 보완할 필요가 있다. 현재까지 결측 강우 자료를 추정하기 위한 방법으로 결측 지점 인근의 관측소를 이용한 단순 가중 평균치 방법에서부터 복잡한 통계적 기반의 보간 방법에 이르기까지 많은 연구들이 진행되고있다. 본 연구에서는 결측 된 강우 자료를 추정하기 위해 인공 신경망을 이용하여 모형을 구축하고 주변 관측소의 강우자료를 이용해 신경망 학습을 실시하여 적용해 보았으며, 최근 관측의 단위가 짧아지고 있는 점을 고려하여 10분, 30분, 1시간 등 다양한 시간간격의 강우자료를 구축하고 선형회귀모형과 RDS 방법, 신경망 모형을 이용한 방법 등을 적용한 결과를 비교하여 신경망 모형의 적용성을 살펴보았다. 단순한 구조면에서는 기존의 RDS 방법에 대한 적용성이 높은 것으로 판단되었으나, 성능의 개선을 위한 별다른 방법이 없는 반면 신경망 모형은 입력 자료를 다양하게 변환하여 구성하는 경우 성능을 개선하여 적용성이 더 높아 질 수 있는 것으로 판단되었다. 향후 신경망 모형을 이용해 잘못 측정된 강우를 적절히 선별하고 결측된 보완함으로써 관측된 강우 자료의 활용성을 높일 수 있을 것이다.

  • PDF

Application of Common Random Numbers in Simulation Experiments Using Central Composite Design (중심합성계획 시뮬레이션 실험에서 공통난수의 활용)

  • Kwon, Chi-Myung
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.3
    • /
    • pp.11-17
    • /
    • 2014
  • The central composite design (CCD) is often used to estimate the second-order linear model. This paper uses a correlation induction strategy of common random numbers (CRN) in simulation experiment and utilizes the induced correlations to obtain better estimates for the second-order linear model. This strategy assigns the CRN to all design points in the CCD. An appropriate selection of the axial points in CCD makes the weighted least squares (WLS) estimator be equivalent to ordinary least squares (OLS) estimator in estimating the linear model parameters of CCD. We analytically investigate the efficiency of this strategy in estimation of model parameters. Under certain conditions, this correlation induction strategy yields better results than independent random number strategy in estimating model parameters except intercept. The simulation experiment on a selected model supports such results. We expect a suggested random number assignment is useful in application of CCD in simulation experiments.

The estimation of parameter using muskingum model in nak-dong river basin incorporating lateral inflow (측방유입량을 고려한 낙동강 유역의 머스킹검 매개변수 추정)

  • Jung, Chan-Yong;Jung, Young-Hun;Kim, Hyoung-Seop;Jung, Sung-Won;Jung, Kwan-Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2270-2275
    • /
    • 2008
  • 수문학적 하도추적법의 하나인 Muskingum 모형은 미 육군공병단(U.S. Army Corps of Engineers)에 의해서 미국 Ohio 주의 Muskingum 유역에 홍수조절계획으로 처음 사용되었으며 모형의 구조 및 입력자료의 단순성에 비하여 비교적 우수한 결과를 모의할 수 있는 것으로 알려져 있다. 1938년 McCarthy에 의해서 개발되었고 구간내 총저류량은 prism 저류와 wedge 저류로 구분하여 prism 저류는 유출량에 wedge 저류는 유입량과 유출량의 차에 직접 비례한다는 가정하에 추적식을 개발하였다. 이후 지속적인 연구가 이뤄져 1985년 O'Donnel은 측방유입량(lateral inflow)을 상류단의 유입량에 비례하는 형태로 3-매개변수 muskingum 모형을 제안하여 추적계수의 결정을 선형대수(linear algebra)에서 동차(homogeneous)연립방정식 해를 구하는 Cramer 법칙인 matrix 기법을 적용하였다. 본 연구에서는 홍수사상으로부터 측방유입량이 고려되고 추적계수 결정에 있어서 직접 계산이 가능한 O'Donnel(1985)이 제안한 3-매개변수 muskingum 모형을 적용하였다. 추적계수들의 결정은 직접 matrix 기법을 적용하였고 적용대상은 낙동강 유역의 낙동 지점을 상류단으로 구미 지점을 하류단으로 선정하였다. 홍수사상은 낙동강 유량측정 조사사업 2005년${\sim}$2007년 보고서에 수록된 수문자료를 선정하여 관측치와 계산치를 비교하였고 홍수사상에 적용하여 수문곡선을 추정하였으며, 각각의 매개변수가 추적구간에 어떠한 영향을 미치는지 변수간의 관계를 분석하였다. 또한, 관측치와 계산치의 적합도 검증은 평균제곱근오차(root mean squar error; RMSE)와 모형 효율성 계수(model efficiency; ME)를 산정하여 분석하였으며, 하도 구간내 저류량은 대상구간에 대한 유입량과 유출량의 가중합에 비례한다는 선형모형을 적용하였다.

  • PDF

A Monte Carlo Comparison of the Small Sample Behavior of Disparity Measures (소표본에서 차이측도 통계량의 비교연구)

  • 홍종선;정동빈;박용석
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.455-467
    • /
    • 2003
  • There has been a long debate on the applicability of the chi-square approximation to statistics based on small sample size. Extending comparison results among Pearson chi-square Χ$^2$, generalized likelihood .ratio G$^2$, and the power divergence Ι(2/3) statistics suggested by Rudas(1986), recently developed disparity statistics (BWHD(1/9), BWCS(1/3), NED(4/3)) we compared and analyzed in this paper. By Monte Carlo studies about the independence model of two dimension contingency tables, the conditional model and one variable independence model of three dimensional tables, simulated 90 and 95 percentage points and approximate 95% confidence intervals for the true percentage points are obtained. It is found that the Χ$^2$, Ι(2/3), BWHD(1/9) test statistics have very similar behavior and there seem to be applcable for small sample sizes than others.

Parameters Estimation of Probability Distributions Using Meta-Heuristic Algorithms (Meta-Heuristic Algorithms를 이용한 확률분포의 매개변수 추정)

  • Yoon, Suk-Min;Lee, Tae-Sam;Kang, Myung-Gook;Jeong, Chang-Sam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.464-464
    • /
    • 2012
  • 수문분야에 있어서 빈도해석의 목적은 특정 재현기간에 대한 발생 가능한 수문량의 규모를 파악하는데 있으며, 빈도해석의 정확도는 적합한 확률분포모형의 선택과 매개변수 추정방법에 의존하게 된다. 일반적으로 각 확률분포모형의 특성을 대표하는 매개변수를 추정하기 위해서는 모멘트 방법, 확률가중 모멘트 방법, 최대우도법 등을 이용하게 된다. 모멘트 방법에 의한 매개변수 추정은 해를 구하기 위한 과정이 단순한 반면, 비대칭형의 왜곡된 분포를 갖는 자료들에 대해서는 부정확한 결과를 나타내게 된다. 확률가중 모멘트 방법은 표본의 크기가 작거나 왜곡된 자료일 경우에도 비교적 안정적인 결과를 제공하는 반면, 확률 가중치가 정수로만 제한되는 단점을 갖고 있다. 그리고 대수 우도함수를 이용하여 매개변수를 추정하게 되는 최우도법은 가장 효율적인 매개변수 추정치를 얻을 수 있는 것으로 알려져 있으나, 비선형 연립방정식으로 표현되는 해를 구하기 위해서는 Newton-Raphson 방법을 사용하는 등 절차가 복잡하며, 때로는 수렴이 되지 않아 해룰 구하지 못하는 경우가 발생되게 된다. 이에 반해, 최근의 Genetic Algorithm, Ant Colony Optimization 및 Simulated Annealing과 같은 Meta-Heuristic Algorithm들은 복잡합 공학적 최적화 문제 있어서 효율적인 대안으로 주목받고 있으며, Hassanzadeh et al.(2011)에 의해 수문학적 빈도해석을 위한 매개변수 추정에 있어서도 그 적용성이 검증된바 있다. 본 연구의 목적은 연 최대강수 자료의 빈도해석에 적용되는 확률분포모형들의 매개변수 추정을 위해 Meta-Heuristic Algorithm을 적용하고자 함에 있다. 따라서 본 연구에서는 매개변수 추정을 위한 방법으로 Genetic Algorithm 및 Harmony Search를 적용하였고, 그 결과를 최우도법에 의한 결과와 비교하였다. GEV 분포를 이용하여 Simulation Test를 수행한 결과 Genetic Algorithm을 이용하여 추정된 매개변수들은 최우도법에 의한 결과들과 비교적 유사한 분포를 나타내었으나 과도한 계산시간이 요구되는 것으로 나타났다. 하지만 Harmony Search를 이용하여 추정된 매개변수들은 최우도법에 의한 결과들과 유사한 분포를 나타내었을 뿐만 아니라 계산시간 또한 매우 짧은 것으로 나타났다. 또한 국내 74개소의 강우관측소 자료와 Gamma, Log-normal, GEV 및 Gumbel 분포를 이용한 실증연구에 있어서도 Harmony Search를 이용한 매개변수 추정은 효율적인 매개 변수 추정치를 제공하는 것으로 나타났다.

  • PDF

Fast robust variable selection using VIF regression in large datasets (대형 데이터에서 VIF회귀를 이용한 신속 강건 변수선택법)

  • Seo, Han Son
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.4
    • /
    • pp.463-473
    • /
    • 2018
  • Variable selection algorithms for linear regression models of large data are considered. Many algorithms are proposed focusing on the speed and the robustness of algorithms. Among them variance inflation factor (VIF) regression is fast and accurate due to the use of a streamwise regression approach. But a VIF regression is susceptible to outliers because it estimates a model by a least-square method. A robust criterion using a weighted estimator has been proposed for the robustness of algorithm; in addition, a robust VIF regression has also been proposed for the same purpose. In this article a fast and robust variable selection method is suggested via a VIF regression with detecting and removing potential outliers. A simulation study and an analysis of a dataset are conducted to compare the suggested method with other methods.

Analysis of Shallow-Water Equations with HLLC Approximate Riemann Solver (HLLC Approximate Riemann Solver를 이용한 천수방정식 해석)

  • Kim, Dae-Hong;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.10
    • /
    • pp.845-855
    • /
    • 2004
  • The propagation and associated run-up process of nearshore tsunamis in the vicinity of shorelines have been analyzed by using a two-dimensional numerical model. The governing equations of the model are the nonlinear shallow-water equations. They are discretized explicitly by using a finite volume method and the numerical fluxes are reconstructed with a HLLC approximate Riemann solver and weighted averaged flux method. The model is applied to two problems; The first problem deals with water surface oscillations, while the second one simulates the propagation and subsequent run-up process of nearshore tsunamis. Predicted results have been compared to available analytical solutions and laboratory measurements. A very good agreement has been observed.

Improving Multinomial Naive Bayes Text Classifier (다항시행접근 단순 베이지안 문서분류기의 개선)

  • 김상범;임해창
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.259-267
    • /
    • 2003
  • Though naive Bayes text classifiers are widely used because of its simplicity, the techniques for improving performances of these classifiers have been rarely studied. In this paper, we propose and evaluate some general and effective techniques for improving performance of the naive Bayes text classifier. We suggest document model based parameter estimation and document length normalization to alleviate the Problems in the traditional multinomial approach for text classification. In addition, Mutual-Information-weighted naive Bayes text classifier is proposed to increase the effect of highly informative words. Our techniques are evaluated on the Reuters21578 and 20 Newsgroups collections, and significant improvements are obtained over the existing multinomial naive Bayes approach.

Development of machine learning framework to inverse-track a contaminant source of hazardous chemicals in rivers (하천에 유입된 유해화학물질의 역추적을 위한 기계학습 프레임워크 개발)

  • Kwon, Siyoon;Seo, Il Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.112-112
    • /
    • 2020
  • 하천에서 유해화학물질 유입 사고 발생 시 수환경 피해를 최소화하기 위해 신속한 초기 대응이 필요하다. 따라서, 본 연구에서는 수환경 화학사고 대응 시스템 구축을 위해 하천 실시간 모니터링 지점에서 관측된 유해화학물질의 농도 자료를 이용하여 발생원의 유입 지점과 유입량을 역추적하는 프레임워크를 개발하였다. 본 연구에서 제시하는 프레임워크는 첫 번째로 하천 저장대 모형(Transient Storage Zone Model; TSM)과 HEC-RAS 모형을 이용하여 다양한 유량의 수리 조건에서 화학사고 시나리오를 생성하는 단계, 두번째로 생성된 시나리오의 유입 지점과 유입량에 대한 시간-농도 곡선 (BreakThrough Curve; BTC)을 21개의 곡선특징 (BTC feature)으로 추출하는 단계, 최종적으로 재귀적 특징 선택법(Recursive Feature Elimination; RFE)을 이용하여 의사결정나무 모형, 랜덤포레스트 모형, Xgboost 모형, 선형 서포트 벡터 머신, 커널 서포트 벡터 머신 그리고 Ridge 모형에 대한 모형별 주요 특징을 학습하고 성능을 비교하여 각각 유입 위치와 유입 질량 예측에 대한 최적 모형 및 특징 조합을 제시하는 단계로 구축하였다. 또한, 현장 적용성 제고를 위해 시간-농도 곡선을 2가지 경우 (Whole BTC와 Fractured BTC)로 가정하여 기계학습 모형을 학습시켜 모의결과를 비교하였다. 제시된 프레임워크의 검증을 위해서 낙동강 지류인 감천에 적용하여 모형을 구축하고 시나리오 자료 기반 검증과 Rhodamine WT를 이용한 추적자 실험자료를 이용한 검증을 수행하였다. 기계학습 모형들의 비교 검증 결과, 각 모형은 가중항 기반과 불순도 감소량 기반 특징 중요도 산출 방식에 따라 주요 특징이 상이하게 산출되었으며, 전체 시간-농도 곡선 (WBTC)과 부분 시간-농도 곡선 (FBTC)별 최적 모형도 다르게 산출되었다. 유입 위치 정확도 및 유입 질량 예측에 대한 R2는 대부분의 모형이 90% 이상의 우수한 결과를 나타냈다.

  • PDF