• Title/Summary/Keyword: 가열 압력

Search Result 291, Processing Time 0.043 seconds

CFD Analysis for Simulating Very-High-Temperature Reactor by Designing Experimental Loop (초고온가스로 모사 실험회로 설계를 위한 전산유체역학 해석)

  • Yoon, Churl;Hong, Sung-Deok;Noh, Jae-Man;Kim, Yong-Wan;Chang, Jong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.553-561
    • /
    • 2010
  • A medium-scale helium loop that can simulate a VHTR (very-high-temperature reactor) is now under construction at the Korea Atomic Energy Research Institute. The heaters of the test helium loop electrically heat helium fluid up to $950^{\circ}C$ at pressures of 1 to 9 MPa. To optimize the design specifications of the experimental helium loop, the conjugate heat transfer in the high-temperature helium heater was analyzed by performing a CFD simulation. The analysis results indicate that the maximum temperature does not exceed the allowable limit. It is confirmed that the thermal characteristics of the loop with the given geometry satisfy the design requirements.

A Study on the Flow Conditions of the Combustion Air Heater Outlet for the Supersonic Combustion Experiment (초음속 연소 실험을 위한 연소식 공기 가열기 출구 유동 조건 실험 연구)

  • Lee, Eun Sung;Han, Hyung-Seok;Lee, Jae Hyuk;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.88-97
    • /
    • 2022
  • In this study, a vitiated air heater was designed and manufactured to supply high-temperature and high-pressure air to the ground test apparatus of a direct-connected supersonic combustor, and an experiment was performed to verify the target design point. By installing wedges at the upper boundary, lower boundary and center of the nozzle exit of the vitiated air heater, it was confirmed that the Mach number satisfies the 2.0 level, and the pressure of the combustion chamber was also satisfactory compared to the design point. In the case of temperature, the measured temperature deviation was large due to the degree of exposure of the thermocouple and the slow response characteristics. After that, the isolator was connected to the rear of the vitiated air heater, and the Mach number was measured in the same method, and the Mach number at the center of the isolator eixt was slightly reduced to 1.8~1.9.

A Study of the Growth Rate of TiN Film Produced by Using TDEAT (TDEAT TiN 증착률에 영향을 미치는 인자들에 대한 연구)

  • 최정환;이재갑;박상준;김재호;홍해남;윤의중;김좌연
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.214-220
    • /
    • 1998
  • We have studied the factors influencing the growth rate of TiN deposited from TDEAT using a bubbler. The growth rate of TiN was primarily dependent on the bubbler temperature, deposition temperature, gas delivery line conductance and carrier gases. In addition, the heating of the gas line through which carrier gas was delivered to the bubbler increased the growth rate slightly. Also heating of the delivery gas line between the bubbler and the chamber caused the increase of the growth rate of TiN, Showing the Arrehenius behaviour with the activation energy of 0.2 eV.

  • PDF

Performance Test of Vitiated Air Heater with High Temperature and High Pressure (고온 고압 공기가열기 성능시험)

  • Lee, Jungmin;Na, Jaejeoung;Hong, Yunky;Kim, Jeongwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.68-75
    • /
    • 2018
  • This study presents the performance test results and the analyses of the vitiated air heater with high temperature and high pressure. In the performance test, four test conditions and three rake measurement conditions were implemented. In the results of the performance test, the vitiated air heater met targets of temperature and flow rate, and the performance with maximum temperature of 2000 K and maximum combustion pressure of 40 bar was confirmed. Flow rate of provided methane increased 36% more than what was calculated, and 19.6% difference was displayed between measured temperature and theoretically calculated temperature.

A study for detection of melt flow zone about polyethylene butt fusion joints (폴리에틸렌 배관 버트융착부 열용융거리 측정에 대한 연구)

  • Kil, Seonghee;Kim, Younggu;Jo, NYoungdo;Lee, Yeonjae
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.103-109
    • /
    • 2016
  • Polyethylene pipes has useful benefits which are anti-corrosive and flexible material, so it is used to gas pipes but also class 3 water pipes of nuclear power plant, process pipes of petrochemical plant and chemical plant. So the usage of polyethylene pipes is widely increased. But it has been limited for the usage of polyethylene, because it can not be directly detected to fusion joints by using non destructive evaluation. Polyethylene pipes are connected by two methods, one is butt fusion and the other is electrofusion. Butt fusion is widely used to connecting the pipes. It is proposed to method for determining the reliability of joints in this study that is detection of the melt flow zone at fusion joints. In this study, middle density polyethylene is used, outside diameter of the test specimen is 225mm and thickness is 20.5mm. Speed of ultrasonic of this test specimen is 2,200m/s. Test specimens were fabricated by varying the heating time which means from 0% to 130% applying time through heating plate to polyethylene for detecting melt flow zone. Also 4 additional test specimens were made, one was made that not scrapping attached surface of pipes but applying 100% of the proper heating time and the others were made to include of soil, gravel and vinly tape paper at fusion joints, that were also applied 100% of proper heating time. Ultrasonic testing to measure the melt flow zone of 20 test specimens was conducted by using 3.5MHz and 5.0MHz ultrasonic probes and melt flow zone measuring was conducted to three times at different point to one specimen. To differentiate the melt flow zone signal, post image processing was equally conducted to all test results and image levels, contrast, sharpen, threshold were adopted to all teat results and the test results were displayed gray scale. From the results, for the shorter heating times the reflection area of multiple echo have been increased, so the data was obtained from the position where it can be eliminated as much as possible. At 80% of proper heating time(168 sec.), the signal of melt flow zone was obtained clearly, so measuring could be conducted. From 7% of proper heating time(15 sec.) to shorter heating times. we could not obtain the signal because test specimen was not fused. From the result, we can verify that measuring of melt flow zone by using phased array ultrasonic imaging method is possible. And we can verify to complete and incomplete butt fusion by measuring the melt flow zone.

Critical Heat Flux in Uniformly Heated Rod Bundle Under Wide Range of System Pressures (광범위한 압력조건하에서 균일 가열 수직 봉다발에서의 임계열유속)

  • Moon, Sang-Ki;Chun, Se-Young;Choi, Ki-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.195-200
    • /
    • 2001
  • An experimental study on critical heat flux (CHF) has been performed for water flow in a uniformly heated vertical 3 by 3 rod bundle under low flow and a wide range of pressure conditions. The objective of this study is to investigate the parametric trends of CHF with 3 by 3 rod bundle test section where three unheated rods exist. The general trends of the CHF are coincident with previous understandings. At low flow and system pressure above 3 MPa, some critical qualities are larger than 1.0 due to counter-current flow in test sections. Since there is a supply of water to the heated section from unheated section, the maximum CHFs at system pressure between 2 and 4 MPa are not shown.

  • PDF

Synthesis of Dense $ZrSi_2-SiC$ Composites by High-Frequency Induction Heated Combustion and Its Mechanical Properties (고주파 유도가열 소결법에 의한 치밀한 $ZrSi_2-SiC$ 합성 및 기계적 특성)

  • Park Hyeon-Guk;Son In-Jin;Yun Jin-Guk;Hong Gyeong-Tae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.04a
    • /
    • pp.69-70
    • /
    • 2006
  • 고주파 유도가열 연소합성법에 의해 2분 이내의 짧은 시간에 단일 공정으로 ZrC와 3Si의 혼합 분말로부터 $ZrSi_2-SiC$ 복합재료의 합성과 치밀화가 동시에 이루어졌다. 60MPa의 압력과 90%의 고주파 출력을 가하여 제조된 복합재료의 상대밀도는 약 97%였으며, $ZrSi_2$ 상과 SiC의 평균 결정립 크기는 약154nm와 78nm이었다. 비커스 경도계를 이용하여 측정된 $ZrSi_2-SiC$ 복합 재료의 경도와 파괴인성 값은 각각 $1180kg/mm^2$$2.5MPa{\cdot}m^{1/2}$ 이었다.

  • PDF

원자로 RI 생산용 조사용기 제작 및 시험

  • 박울재;한현수;조운갑;홍순복;이철영
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.763-768
    • /
    • 1998
  • 방사성동위원소 생산용 표적을 중성자 조사하기 위해 하나로의 제반 특성을 고려하여 조사용기를 개발하였다 IP(Isotope Production), HTS(Hydraulic Transfer System) 조사공별로 내.외부용기를 제작하였으며 재료는 검증된 Al-1050을 사용하였다. 내부용기는 냉간용접(Cold Welding) 하고, 외부용기는 TIG(Tungsten Inert Gas) 또는 전자빔으로 용접한 후 He을 충진하고 밀봉하였다. 조사용기의 건전성을 입증하기 위해 기포누설시험, 내압시험, 가열시험, 침투탐상시험, He 누설시험을 수행하였다. 기포누설시험 결과 내부용기는 90% 이상이 3x$10^{-6}$atm.cc/sec 이하의 누설율을 보였고, 내압시험 결과 파단압력은 28kg/$\textrm{cm}^2$ 정도였다. 외부용기는 TIG 용접시 70%, 전자빔 용접시 90% 이상이 누설율 1x$10^{-8}$atm.cc/sec 이하였다. 개발된 조사용기를 사용하여 하나로에서 200여회 방사성동위원소를 생산하였으나 중성자 조사중 누출을 포함한 기타의 문제가 발생하지 않았다. 조사용기 개발에서 확립된 밀봉시험, 내압시험 및 가열시험 방법은 기체표적이나 내압이 발생하는 표적용기의 개발 및 시험에 응용할 수 있다.

  • PDF

RF 안테나 주파수에 따른 유도결합형 수소 플라즈마 이온원의 수소 이온 밀도 분율 변화 연구

  • Heo, Seong-Ryeol;Kim, Gon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.133-133
    • /
    • 2010
  • 중성입자빔 입사장치(neutral beam injection, NBI)의 중성빔 에너지 효율은 이온원의 수소 이온밀도 분율이 결정한다. 이온원에서 만들어진 $H^+$, $H_2^+$ 그리고 ${H_3}^+$는 중성화 과정(neutralization) 중 해리(dissociation) 때문에 각각 입사 에너지의 1, 1/2 그리고 1/3을 가진 중성입자가 된다. 중성빔 에너지 효율 제고하기 위해서는 이온원의 전체 이온 중 단원자 수소 이온 밀도 증가가 필요하다. 유도결합형 수소 플라즈마 이온원에서 RF 안테나 주파수에 따른 플라즈마 밀도와 단원자 수소 이온 밀도 비율 변화를 관찰하였다. RF 플라즈마에서 가스 압력이 결정하는 전자의 운동량 전달 충돌 주파수 대비 높은 RF 안테나 주파수(13.56 MHz)와 낮은 RF 안테나 주파수(수백 kHz)의 전력을 인가하였으며, Langmuir 탐침, 안테나 V-I 측정기 그리고 QMS(quadrupole mass spectrometer)을 이용하여 플라즈마 특성을 진단하였다. 플라즈마 밀도와 수소 이온 밀도 분율은 플라즈마 가열 메커니즘과 수소 플라즈마 내 반응 메커니즘에 의해 결정된다. 플라즈마 가열 메커니즘에 따른 실험 결과에 대한 RF 안테나 주파수 효과는 플라즈마 트랜스포머 회로 모델을 통해 해석하였으며, 수소 플라즈마 내 반응은 0-D 정상 상태의 입자 및 전력 평형 방정식 결과로 해석하였다.

  • PDF

Gasdynamic Characteristics of the Hypersonic Test Cell of RTC of CIAM at Modeling of Flight Conditions Appropriate Mf = 6 (비행조건 마하 6을 모델링한 모스크바 중앙엔진연구소 극초음속 시험 설비의 공력 특성)

  • Je, Woo-Kwan;Skivin V. A.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.1
    • /
    • pp.10-17
    • /
    • 2001
  • In this paper are presented main power and gasdynamic characteristics of hypersonic test cell of Research Test Center (RTC) of Central Institute of Aviation Motors (CIAM). The distributions of temperature and Mach number at the exit of the aerodynamic nozzle of test cell are received at simulation conditions of flight at Mf=6. Values of available pressure difference and throttling characteristics for various operational modes of test cell, including the loading of working section by Scramjet model without the heating of air at entrance to the aerodynamic nozzle and with the heating of air, are received too.

  • PDF