DOI QR코드

DOI QR Code

A Study on the Flow Conditions of the Combustion Air Heater Outlet for the Supersonic Combustion Experiment

초음속 연소 실험을 위한 연소식 공기 가열기 출구 유동 조건 실험 연구

  • Lee, Eun Sung (Department of Aerospace Engineering, Pusan National University) ;
  • Han, Hyung-Seok (Department of Aerospace Engineering, Pusan National University) ;
  • Lee, Jae Hyuk (Department of Aerospace Engineering, Pusan National University) ;
  • Choi, Jeong-Yeol (Department of Aerospace Engineering, Pusan National University)
  • Received : 2021.10.06
  • Accepted : 2022.01.29
  • Published : 2022.02.28

Abstract

In this study, a vitiated air heater was designed and manufactured to supply high-temperature and high-pressure air to the ground test apparatus of a direct-connected supersonic combustor, and an experiment was performed to verify the target design point. By installing wedges at the upper boundary, lower boundary and center of the nozzle exit of the vitiated air heater, it was confirmed that the Mach number satisfies the 2.0 level, and the pressure of the combustion chamber was also satisfactory compared to the design point. In the case of temperature, the measured temperature deviation was large due to the degree of exposure of the thermocouple and the slow response characteristics. After that, the isolator was connected to the rear of the vitiated air heater, and the Mach number was measured in the same method, and the Mach number at the center of the isolator eixt was slightly reduced to 1.8~1.9.

본 연구에서는 직접 연결식 초음속 연소기의 지상 시험 장치에 고온, 고압 공기 공급을 위한 연소식 공기 가열기를 설계 및 제작하였으며, 목표 설계점 만족 여부를 검증하기 위한 실험을 수행하였다. 연소식 공기 가열기 노즐 출구의 상부 경계, 하부 경계 및 중앙에 쐐기를 설치하여 마하수가 2.0 수준을 만족하는 것을 확인하였으며, 연소실 내부 압력 또한 설계점과 비교하여 만족할만한 수준으로 나타났다. 온도의 경우 열전대의 노출되는 정도와 느린 응답 특성에 의해 측정된 온도의 편차가 크게 나타났다. 이후 연소식 공기 가열기 후방에 격리부를 연결하고 동일한 방법으로 마하수를 측정하였으며, 격리부 출구 중앙의 마하수는 1.8~1.9 정도로 소폭 감소하였다.

Keywords

Acknowledgement

본 연구는 방위사업청의 재원으로 국방과학연구소 일반기초연구(No. 08-201-501-014)의 자원으로 수행되었습니다.

References

  1. Kim, J.W. and Lee, J.M., "The Review and Investigation of High Temperature Heater Development," Journal of the Korean Society of Propulsion Engineers, Vol. 20, No. 5, pp. 90-98, 2016. https://doi.org/10.6108/KSPE.2016.20.5.090
  2. Marshall, W.M., Pal, S., Woodward, R.D. and Santoro, R.J., "Benchmark Wall Heat Flux Data for a GO2/GH2 Single Element Combustor," 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, AZ, U.S.A., AIAA 2005-3572, Jul. 2005.
  3. Jin, S.W., Choi, H.J., Lee, H.J., Byun, J.R., Bae, J.H. and Park, D.C., "Combustion Characteristics Based on Injector Shape of Supersonic Combustor," Journal of the Korean Society of Propulsion Engineers, Vol. 23, No. 3, pp. 76-87, 2019. https://doi.org/10.6108/KSPE.2019.23.3.076
  4. Yang, I.Y., Lee, K.J., Lee, Y.J., Lee, S.H., Kim, H.M. and Park, P.M., "Combustion Test for a Supersonic Combustor Using a Direct-Connected Facility," Journal of the Korean Society of Propulsion Engineers, Vol. 22, No. 3, pp. 1-7, 2018. https://doi.org/10.6108/KSPE.2018.22.3.001
  5. Aguilera, C. and Yu, K.H., "Effect of Fin-Guided Fuel Injection on Dual Mode Scramjet Operation," 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, U.S.A., AIAA 2014-3945, Jul. 2014.
  6. Nakaya, S., Hikichi, Y., Nakazawa, Y., Sakaki, K., Choi, M.H., Tsue, M., Kono, M. and Tomioka, S., "Ignition and supersonic combustion behavior of liquid ethanol in a scramjet model combustor with cavity flame holder," Proceedings of the Combustion Institute, Vol. 35, No. 2, pp. 2091-2099, 2015. https://doi.org/10.1016/j.proci.2014.07.023
  7. Sun, M.B., Gong, C., Zhang, S.P., Liang, J.H., Liu, W.D. and Wang, Z.G., "Spark ignition process in a scramjet combustor fueled by hydrogen and equipped with multi-cavites at Mach 4 flight condition," Experimental Thermal and Fluid Science, Vol. 43, pp. 90-96, 2012. https://doi.org/10.1016/j.expthermflusci.2012.03.028
  8. Jeong, S.M., Han, H.S., Sung, B.K., Lee, E.S. and Choi, J.Y., "Numerical Study on the Process of Supersonic Flow Formation in a Direct-Connect Supersonic Combustor," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 48, No. 11, pp. 889-902, 2020. https://doi.org/10.5139/JKSAS.2020.48.11.889
  9. Gordon, S. and McBride, B.J., "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications," NASA, Cleveland, OH, U.S.A., NASA RP-1311, 1994.
  10. Sung, B.K. and Choi, J.Y., "Design of a Mach 2 shape transition nozzle for lab-scale direct-connect supersonic combustor," Aerospace Science and Technology, Vol. 117, 2021.
  11. Han, H.S., Jin, W.S., Oh, S.J. and Choi, J.Y., "Ignition System in Multiple Combustion Chambers using Small-scale Pulse Detonation Engine," 2016 KSPE Fall Conference, Gangwon-do, Korea, pp. 10-11, Dec. 2016.