• 제목/요약/키워드: 가스연소

검색결과 2,399건 처리시간 0.032초

순산소 순환유동층 연소 조건에서 생석회의 재탄산화 반응 (Re-carbonation of Calcined Limestone Under Oxy-Circulating Fluidized Bed Combustion Conditions)

  • 김예빈;곽유라;길상인;윤진한;이시훈
    • Korean Chemical Engineering Research
    • /
    • 제56권6호
    • /
    • pp.856-863
    • /
    • 2018
  • 순산소 순환유동층 보일러에서 탈황을 위해 이용되는 석회석의 재탄산화 거동을 분석하기 위하여, 상용 순환유동층 보일러에서 이용되는 석회석 4종의 재탄산화 반응 특성을 열중량분석기(TGA-N1000)에서 고농도의 $CO_2$ 가스를 이용하여 분석하였다. 생석회의 재탄산화 반응은 반응온도($600{\sim}900^{\circ}C$), 석회석의 $CaCO_3$ 함량(77~95%) 등의 조건에 따른 질량 변화를 통해 고찰되었다. $600{\sim}800^{\circ}C$의 온도 영역에서는 반응 온도가 증가함에 따라 전환율이 증가하였고, $850{\sim}900^{\circ}C$ 에서는 반응 온도가 증가함에 따라 전환율이 감소하는 경향이 발견되었다. $CaCO_3$ 함량의 경우, $870^{\circ}C$의 반응온도에서 뚜렷한 전환율의 차이를 보였다. 또한 기-고체반응속도 모델들에 적용하여 석회석의 재탄산화 반응을 모사하는 반응속도식을 제시하였다.

인도네시아 바이오매스 반탄화를 통해 제조된 고품위 고형연료의 활용 (Utilization of Upgraded Solid Fuel Made by the Torrefaction of Indonesian Biomass)

  • 유지호
    • 청정기술
    • /
    • 제26권4호
    • /
    • pp.239-250
    • /
    • 2020
  • 바이오매스는 풍부한 신재생에너지로 화석연료에 의한 온실가스 배출을 줄일 수 있는 자원으로 활용될 수 있다. 인도네시아에서는 경제성이 우수한 대량의 조림지 부산물과 팜 부산물이 발생된다. 일반적으로 바이오매스들은 낮은 열량 및 연소 효율에 의해 연료로서 사용하기 어려운 경우가 많다. 최근 이러한 바이오매스를 고품위 연료로 전환하는 반탄화 기술 개발이 활발하며, 유럽을 중심으로 다수의 생산 설비가 상용화되었다. 우리나라는 현재 ~ 2 million ton yr-1 이상의 혼소용 우드팰릿을 동남아시아에서 수입하고 있다. 하지만 반탄화 연료 시장은 아직 열리지 않았고, 추후 국내 기술 및 시장 환경 성숙에 따라 도입되리라 예상된다. 인도네시아 현지 혼소용 연료로서 반탄화된 조림지 부산물은 신재생에너지 확대 정책(feed-in-tariff, FIT) 하에서 경제성 확보 가능하다. 하지만 팜 부산물인 EFB (empty fruit bunch, EFB)를 혼소용 연료로 사용하기 위해서는 알카리 금속 제거에 따른 경제성 저하 극복 방안이 강구되어야 한다. ETS (emission trading system, ETS)와 CDM (clean development mechanism, CDM)제도의 지원을 받는 경우 EFB는 연료 민감성이 낮은 시멘트 소성로에서 기존 석탄을 대체할 수 있을 것으로 판단된다.

분젠 예혼합 화염을 활용한 아산화질소 처리기술에 관한 연구 (Treatment Technology of N2O by using Bunsen Premixed Flame)

  • 진시영;서재근;김희재;신승환;남동현;김성민;김대해;윤성환
    • 해양환경안전학회지
    • /
    • 제27권1호
    • /
    • pp.153-160
    • /
    • 2021
  • 아산화질소(Nitrous oxide, N2O)는 지구온난화 물질의 하나로 이산화탄소에 비해 지구온난화효과가 310배 강하고 분해하는데 120년이 소요되기 때문에 오존층 파괴에 주범으로 알려져 있다. 따라서 본 연구에서는 N2O를 저감하기 위해 고온 열분해 기술을 적용하여 N2O 저감 공정에서 발생하는 NOx 배출 특성에 대해 조사하였다. 고온 유동장을 형성하기 위해 동축 분젠 예혼합 화염을 열원으로 채택하였으며 실험 변수로는 노즐출구속도, 동축류 속도 및 N2O 희석률로 설정하였다. 실험 결과, NO 생성률은 노즐출구속도 및 동축류 유량에 관계없이 N2O 희석률이 증가함에 따라 증가하였다. N2O의 경우에는 연소 불안정성(Kelvin Helmholtz 불안정)이 억제된 안정된 예혼합 화염에서 다량으로 배출되었는데, 이는 화염 면 부근에서 감소된 N2O의 체류시간으로 인해 열분해 시간이 충분하지 않기 때문인 것으로 사료된다. 따라서 N2O의 저감 효율을 증진시키기 위해서는 K-H 불안정성이 발생되는 노즐출구속도를 선정하여 화염 면 부근에서 발생되는 와류(toroidal vortex) 형태의 유동 구조를 형성하는 것이 N2O의 체류시간을 증가시키는데 효과적인 것으로 판단된다.

전기차 폐배터리 진단/해체 기술 동향 및 향후 친환경적 개발 전략 (Current Trend of EV (Electric Vehicle) Waste Battery Diagnosis and Dismantling Technologies and a Suggestion for Future R&D Strategy with Environmental Friendliness)

  • 변채은;서지현;이민경;;이상훈
    • 자원리싸이클링
    • /
    • 제31권4호
    • /
    • pp.3-11
    • /
    • 2022
  • 전기차 수요의 증가로 향후 폐차 혹은 배터리 노후화로 인한 폐배터리 배출량 급증이 예상됨에 따라 이에 대한 적정 관리가 시급한 실정이다. 기술개발 측면에서는 데이터 기반 진단 등 다양한 폐배터리 진단 및 관리 기술이 주목을 받고 있다. 또한 로봇기반 자동 해체 기술은 산업 현장에서의 Test 검증 및 향후 배터리 관련 데이터베이스와의 연동이 필요한 것으로 보인다. 특히 향후 폐배터리 순환과정에서의 효율화와 동시에 안전성/친환경성 제고를 위한 다양하고 선진적인 배터리 진단 및 평가기법 개발 및 보급이 중요하다. 또한 리튬 관련 화학물질 배출이동에 대한 데이터베이스화와 배터리 연소시 가스유출위험 및 소방안전에 관한 평가 및 대처가 중요할 것으로 보인다. 더 나아가 데이터 기반 진단/분류/해체 과정을 재활용/최종폐기와 연계된 다양한 관점에서의 폐배터리 전주기 관리 최적화 등에 향후 더 많은 연구개발이 필요하다고 판단된다. 그리고 일련의 데이터는 차후 배터리 생산 시 환경적 부담을 감소시키고 재이용/재활용이 원활하도록 청정설계 및 제조에 기여해야 한다. 또한 이러한 최적화는 전기차 배터리의 향후 기술 및 시장 변동을 감안하여 추진되어야 한다.

젖은 벽탑을 이용한 디에틸렌트리아민과 디에틸에탄올아민 수용액의 CO2 흡수속도 측정 (Kinetics of CO2 Absorption in Aqueous DETA and DEEA Solutions by Wetted-Wall Column)

  • 유정균;이준;홍연기
    • Korean Chemical Engineering Research
    • /
    • 제60권4호
    • /
    • pp.582-587
    • /
    • 2022
  • 연소 배가스 중 CO2를 포집하기 위한 에너지 저감형 흡수제로 상분리 흡수제가 주목 받고 있다. 본 연구에서는 2종의 아민을 혼합한 상분리 흡수제 중 하나인 디에틸렌트리아민(diethylenetriamine, DETA)과 디에틸아미노에탄올(diethylaminoethanol, DEEA) 흡수제를 구성하는 DETA와 DEEA 각각의 흡수 속도를 측정하기 위해 젖은 벽탑을 사용하였다. 총괄 물질전달 계수에 대한 DETA 및 DEEA의 농도와 조업 온도에 따른 영향을 고찰하였다. 그 결과 DETA 농도에 따라 총괄 물질전달 계수는 비례하였지만 DEEA 농도의 경우 그 영향이 적었고 일정 농도를 넘어설 경우 총괄 물질전달 계수가 감소하였다. DETA 수용액은 조업 온도에 따라 총괄 물질전달 계수의 변화가 적었던 반면 DEEA 수용액은 조업 온도에 따라 총괄 물질전달 계수가 증가하였다. 의사 1차 반응 가정 하에서 관찰 반응 속도 상수를 구한 결과 DETA 수용액에서의 관찰 반응속도 상수는 DETA 농도에 따라 비례하는 관계를 가지나 DEEA는 의사 1차 반응 가정에 맞지 않는 것으로 나타났다.

착화탄 연소에 의한 가스 중독 환자에서 혈중 중금속 농도의 영향에 대한 예비연구 (Effect on blood heavy metal concentration in gas poisoning by combustion of ignition coal: Pilot study)

  • 이상환;이준철;조용일;고벽성;오재훈;강형구
    • 대한임상독성학회지
    • /
    • 제19권2호
    • /
    • pp.127-132
    • /
    • 2021
  • Purpose: It is known that the most common cause of gas poisoning in Korea is suicide attempts by burning ignition coals. Ignition coals are made from waste wood, and studies have been reported that heavy metals are emitted when this coal is burned. However, there was no study on how much heavy metal poisoning occurs in the human body through this, so this study was planned to find out whether the concentration of heavy metals in the blood increased in patients exposed to ignition coal combustion. Methods: From April 2020 to April 2021, blood lead, mercury, and cadmium concentrations were investigated in carbon monoxide poisoning patients who visited one regional emergency medical center in Seoul, and their association with exposure time, source of poisoning, and rhabdomyolysis were investigated. Results: During the study period, a total of 136 carbon monoxide poisoning patients were tested for heavy metals, and 81 cases of poisoning by ignition coal were reported. When comparing poisoning caused by combustion of ignition coal and other substances, there was no difference in the concentrations of lead, mercury, and cadmium in the blood, and there was no difference in the number of patients above the reference range. However, the patients exposed to more than 5 hours of ignition coal gas exposure are more frequent than those in the group less than 5 hours in lead (51.4% vs. 23.9%, p=0.012). Conclusion: Compared to poisoning with other combustible substances, the blood concentration of lead, mercury, and cadmium does not increase further in patients with gas poisoning by ignition coal. However, prolonged exposure may result in elevated levels of lead.

탈질 설비의 성능 개선을 위한 CFD 기법 적용에 관한 연구 (Application of CFD Methods to Improve Performance of Denitrification Facility)

  • 김민규;정희택
    • 청정기술
    • /
    • 제29권4호
    • /
    • pp.305-312
    • /
    • 2023
  • 환경 요구 조건의 강화로 오래된 탈질 설비에 대한 성능 개선이 필요하다. 본 연구에서는 전산 해석 기법을 이용하여 성능 향상의 가능성을 제시하고자 하였다. 입구 안내 깃과 곡확산부 등 설비 내 유로의 기하학적인 형상의 수정과 암모니아 분사량의 제어 등 설계와 운전 조건을 둘 다 변경하여 해석을 수행하였다. 촉매 층에 유입되는 혼합가스의 유동 균일성과 NH3/NO 조성비, 설비의 압력 강하 등 3가지 성능변수 관점에서 기존에 운영되는 조건과 본 연구에서 제시된 조건을 비교하였다. 전산 해석에서 적용된 유동장의 범위는 연소로 절탄기의 출구에서 공기 예열기의 입구까지로 탈질 설비의 전 영역이다. 전산 해석 도구로 열유체 전용 소프트웨어인 ANSYS-Fluent를 사용하여 유동 특성을 해석하여 성능을 도출하였고 최적화 알고리즘인 Design Xplorer를 사용하여 암모니아의 분사량을 노즐별로 조절하였다. 변경된 설비 조건은 기존의 조건과 비교하여 유동 균일성과 NH3/NO 조성비는 각각 45.1%와 8.7% 향상되었으나 전체 압력 강하는 1.24% 증가하였다.

연료물성에 따른 경유 차량의 성능 및 에너지소비효율 연구 (A Study on The Performance and Fuel Economy of Diesel Vehicles According to Change in Fuel Properties)

  • 노경하;이민호;김기호;이정민
    • 한국응용과학기술학회지
    • /
    • 제35권3호
    • /
    • pp.667-675
    • /
    • 2018
  • 점차 강화되는 배출가스 규제와 적은 연료로 많은 거리를 주행할 수 있는 고효율 자동차에 대한 요구로 에너지소비효율에 대한 관심이 점차 늘어나고 있다. 국내의 에너지소비효율은 도심주행모드와 고속도로 모드를 주행하여 복합연비로 산정하고 5-Cycle 보정식을 이용하여 최종 에너지소비효율을 표시하고 있다. 에너지소비효율의 경우 카본발란스법에 의하여 산출되는데 이때 배출가스에 의해 계산이 됨에 따라 연소에 사용되는 연료는 자동차 성능과 에너지소비효율에 매우 중요한 역할을 하게 된다. 자동차 연료의 경우 국내에서는 석유 및 석유대체연료 사업법 품질기준에 따라 국내에 유통되고 있는데 정유사의 정제 방법이나 원유에 따라 품질 기준 내에서 물성 차이를 보일 수 있다. 일정 품질기준을 정하고 있음에 따라 연료별 큰 차이는 나지 않을 것으로 보이나 자동차의 성능에는 영향을 미칠 수 있어 그에 따른 연구가 필요한 실정이다. 따라서, 본 연구에서는 시중에서 유통되고 있는 연료 중 여름철에 판매되는 경유를 정유사 직영점을 통해 구매하였으며, 각 시료별 물성을 분석하고 그에 따른 에너지소비효율을 측정하였다. 에너지소 비효율의 경우 현행 경유 자동차의 에너지소비효율 산정식과 휘발유 에너지소비효율에서 사용되는 산출식을 이용하여 물성 적용에 따른 변화를 살펴보았다. 그 결과 시료별 밀도는 최대 약 0.9%의 차이를 보였으며, 순발열량은 1.6%의 차이를 보였으며, 현행 에너지소비효율 산출 결과에서는 도심모드에서 약 1%, 고속모드에서 1.4% 차이를 보였다. 휘발유 산출식을 이용한 산출에서는 현행 에너지소비효율 산출때 보다 약 6%정도 낮은 수치를 보였으며, 각 시료별 에너지소비효율은 최대 도심과 고속에서 최대 약 1.4%의 차이를 보였다.

지하공동구내 가연성케이블의 열화접촉으로 인한 화재위험성 예측평가 (Study on the Fire Risk Prediction Assessment due to Deterioration contact of combustible cables in Underground Common Utility Tunnels)

  • Ko, Jaesun
    • 한국재난정보학회 논문집
    • /
    • 제11권1호
    • /
    • pp.135-147
    • /
    • 2015
  • 최근 지하공동구(Underground Common Utility Tunnels)는 도시민이 일상생활을 영위하는데 필요한 전기, 통신, 상수도, 도시 가스, 하수도뿐만 아니라 냉난방시설, 진공 집진관, 정보처리케이블 등의 시설물을 2종 이상 공동으로 수용하기 위한 지하시설물로서 국가의 중추기능을 담당하는 시설이지만, 화재 사고시 신속한 대처가 힘들고 각종 케이블 연소시 발생하는 유독가스 및 연기에 의해 공동구 내에 진입하여 진압하기가 힘들다. 따라서 화재발생시 막대한 재산피해 및 통신두절 등 국가의 중추신경이 마비됨은 물론 시민불편사항을 초래하게 된다. 따라서 본 논문은 지금까지 발생 되어온 국내,외 공동구 화재사례에서 화재발생의 주요원인으로 전기공사로 인한 합선 및 가연성케이블에 의한 열화접촉으로 화재가 발생하는 것이 대다수를 차지하고 있음에 착안하여 실제 공동구 모형을 제작하고 화재를 재현함으로서 과학적으로 화재의 성상을 분석하는데 그 목적이 있다. 화재실험은 지하공동구 내에 정온식 감지선형 감지기(Line type fixed temperature detector), 방화문(Fire door), 연결살수설비(Connection deluge set), 및 환기설비를 설치하고, 송 배전케이블은 일정구간 내화(Fireproof)도료로 도장하며, 난방관은 내화 피복된 상태에서 실험하였다. 그 결과 Type II의 경우 최고온도가 $932^{\circ}C$로 측정되었고, 일정한 온도에서 정온식감지선형감지기가 화재위치를 정확하게 수신반에 표시되었다. 그리고 Type III의 경우인 송 배전케이블은 일정구간 내화도료로 도장한 것은 내화성능이 없는 것으로 나타났고, 내화피복(Fireproof covered)된 난방관은 약 30분 정도의 내화성능이 있는 것으로 나타났다. 또한 화재뮬레이션 결과는 실물화재시험시의 화재하중(Fire load)을 입력하여 실시한 결과로서 최고온도가 $943^{\circ}C$로 실물화재실험시의 $932^{\circ}C$와 거의 일치 하였다. 따라서 공동구 화재하중만으로 화재시뮬레이션을 실시하여 화재성상에 대한 예측이 가능한 것으로 판단되며 시뮬레이션으로 얻은 열방출률(Heat release rate), 연기층의 높이, 산소(O2), 일산화탄소(CO), 이산화탄소(CO2)의 농도 등의 결과 값들은 실제 화재실험시의 값으로 적용시킬 수 있는 것으로 판단된다. 향후 본 연구에서 구축한 국내 지하공동구 화재사고에 대한 실험자료 및 매년 지속적으로 화재사례들을 분석하여 축적하고 법 규정 및 관리 메뉴얼 등을 보완함으로써 국내 지하공동구 화재사고에 대한 보다 신뢰성 있는 정보를 제공해 줄 수 있을 것이며, 효과적이고 체계적으로 지하공동구의 신설 및 유지 관리 보수에 기여할 것으로 기대된다.

한국 이산화탄소 포집 및 저장 기술개발 및 상용화 추진 전략 제안 (Suggestion for Technology Development and Commercialization Strategy of CO2 Capture and Storage in Korea)

  • 권이균;신영재
    • 자원환경지질
    • /
    • 제51권4호
    • /
    • pp.381-392
    • /
    • 2018
  • 본 연구에서는 2030년 국가 온실가스 감축 목표 달성을 위한 실질적인 수단인 이산화탄소 포집 및 저장 상용화를 위한 구체적인 전략과 실행 계획을 검토하였다. 우리나라의 포집 및 저장 사업의 경제성 확보를 위한 추진 전략으로 1) 대용량 저장소 확보와 실질적 저장용량 평가의 시급성, 2) 포집원-저장소 수송거리 최소화, 3) 기술 혁신을 통한 비용 효율화, 4) 공공성 확보와 민간 참여를 유도하는 정부 정책 도입을 제안한다. 이러한 전략들을 바탕으로 2030년까지 이산화탄소 포집 및 저장 상용화를 위한 실행 계획이 수립되어야 한다. 실행 계획은 대규모 포집 및 저장 통합 실증과 이어지는 상용화 사업이 동일한 지역(저장소)에서 수행되도록 구성하는 것이 바람직하다. 또한 단계별로 구체적인 목표를 세우고 목표 달성 여부를 면밀히 판단하여 계속 수행 여부를 단계마다 결정하는 시스템이 필요하다. 1단계(2019년~2021년)는 대규모 저장소 선정과 포집 기술 상용화 단계이다. 최종 부지 선정을 위한 시추와 조사가 이루어져야 하고, 연소 후 습식 포집 기술의 격상과 적용성이 확보되어야 한다. 저장소 및 포집원이 선정되면, 2단계(2022년~2025년)에 정부 주도의 100만톤급 이산화탄소 포집 및 저장 대규모 통합실증을 수행할 수 있다. 저장, 수송, 포집 설비 및 시설의 설계와 구축, 기술의 통합과 실증이 요구된다. 2단계 종료 시점에서 통합실증 성과와 탄소 시장의 성숙도 등을 바탕으로 상용화 사업 진입 여부를 결정해야 한다. 상용화 사업 추진이 결정되면, 포집 설비의 증설과 수송 및 저장 설비의 격상, 보완을 통해 3단계(2026년~2030년) 민간 주도의 400만톤급 이산화탄소 포집 및 저장 상용화 사업이 가능할 것이다.