• Title/Summary/Keyword: 가상 훈련 데이터

Search Result 43, Processing Time 0.028 seconds

Automatic Arm Region Segmentation and Background Image Composition (자동 팔 영역 분할과 배경 이미지 합성)

  • Kim, Dong Hyun;Park, Se Hun;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.18 no.8
    • /
    • pp.1509-1516
    • /
    • 2017
  • In first-person perspective training system, the users needs realistic experience. For providing this experience, the system should offer the users virtual and real images at the same time. We propose an automatic a persons's arm segmentation and image composition method. It consists of arm segmentation part and image composition part. Arm segmentation uses an arbitrary image as input and outputs arm segment or alpha matte. It enables end-to-end learning because we make use of FCN in this part. Image composition part conducts image combination between the result of arm segmentation and other image like road, building, etc. To train the network in arm segmentation, we used arm images through dividing the videos that we took ourselves for the training data.

A study on the emotional changes of learners according to the emotions provided by virtual characters (가상 캐릭터가 제공하는 감정에 따른 학습자의 감정적 반응에 관한 연구)

  • Choi, Dong-Yeon
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.5
    • /
    • pp.155-164
    • /
    • 2022
  • Considerable interest has been directed toward utilizing virtual environment-based simulations for teacher education which provide authentic experience of classroom environment and repetitive training. Emotional Interaction should be considered for more advanced simulation learning performance. Since emotion is important factors in creative thinking, inspiration, concentration, and learning motivation, identifying learners' emotional interactions and applying these results to teaching simulation is essential activities. In this context, this study aims to identify the objective data for the empathetic response through the movement of the learner's EEG (Electroencephalogram) and eye-tracking, and to provide clues for designing emotional teaching simulation. The results of this study indicated that intended empathetic response was provided and in terms of valence (positive and negative) states and situational interest played an important role in determining areas of interest. The results of this study are expected to provide guidelines for the design of emotional interactions in simulations for teacher education as follow; (a) the development of avatars capable of expressing sophisticated emotions and (b) the development of scenarios suitable for situations that cause emotional reactions.

Development and Applications of a Wireless Bioelectric Signal Measurement System on the Electrodes (전극 상의 일체형 무선 생체전기신호 측정 시스템 개발 및 응용)

  • Joo, Se-Gyeong;Kim, Hee-Chan
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.88-94
    • /
    • 2003
  • Electromyogram (EMG) is the bioelectric signal induced by motor nerves. Analyzing EMG with the movement produced by muscle contraction, we can provide input commands to a computer as a man-machine interface as well as can evaluate the patient's motional abnormality. In this paper, we developed an integrated miniaturized device which acquires and transmits the surface EMG of an interested muscle. Developed system measures $60{\times}40{\times}25mm$, weighs 100g. Using an amplifier circuitry on the electrodes and the radio frequency transmission, the developed system dispenses with the use of cables among the electrodes, amplifier, and the post processing system (personal computer). The wiring used in conventional systems can be obstacle for natural motion and source of motion artifacts. In results, the developed system improves not only the signal-to-noise ration in dynamic EMG measurement, but also the user convenience. We propose a new human-computer interface as well as a dynamic EMG measurement system as a possible application of the developed system.

Implementation of Speech Recognition and Flight Controller Based on Deep Learning for Control to Primary Control Surface of Aircraft

  • Hur, Hwa-La;Kim, Tae-Sun;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.57-64
    • /
    • 2021
  • In this paper, we propose a device that can control the primary control surface of an aircraft by recognizing speech commands. The speech command consists of 19 commands, and a learning model is constructed based on a total of 2,500 datasets. The training model is composed of a CNN model using the Sequential library of the TensorFlow-based Keras model, and the speech file used for training uses the MFCC algorithm to extract features. The learning model consists of two convolution layers for feature recognition and Fully Connected Layer for classification consists of two dense layers. The accuracy of the validation dataset was 98.4%, and the performance evaluation of the test dataset showed an accuracy of 97.6%. In addition, it was confirmed that the operation was performed normally by designing and implementing a Raspberry Pi-based control device. In the future, it can be used as a virtual training environment in the field of voice recognition automatic flight and aviation maintenance.

Established Smart Disaster Safety Management Response System based on the 4th Industrial Revolution (4차 산업혁명 기반 스마트 재난안전관리 대응체계 구축)

  • Kang, Heau-Jo
    • Journal of Digital Contents Society
    • /
    • v.19 no.3
    • /
    • pp.561-567
    • /
    • 2018
  • In this paper, we apply this method to the entire process of smart disaster safety management based on the $4^{th}$ industrial revolution to minimize human, social, economic and environment damage from accidents and disasters, prevention evaluation and disaster information collection analysis and real-time detection of field situation. Prevention of $5^{th}$ generation communication system by analysis, contrast by education and training using virtual reality and augmented reality disaster safety management decision support system intelligent robot for recovery, disaster, discovery, reconnaissance relief, and scale analysis of damages were proposed.

An Architecture of the Military Aircraft Safety Check System Using 4th Industrial Revolution Technology (4차 산업혁명기술을 활용한 군 항공기 안전점검 체계 설계)

  • Eom, Jung-Ho
    • Convergence Security Journal
    • /
    • v.20 no.2
    • /
    • pp.145-153
    • /
    • 2020
  • The aviation safety policy master plan is promoting the development of aviation safety management technology applying the 4th industrial revolution technology with the goal of establishing a flawless aviation safety management system and establishing a future aviation safety infrastructure. The master plan includes the establishment of various aviation safety management systems such as aircraft fault management using AI & Big data and flight training system using VR/AR. Currently, the Air Force is promoting a flight safety management system using new technology under the goal of building smart air force. Therefore, this study intends to apply the 4th Industrial Revolution technology to the aircraft condition check system that finally checks the safety of the aircraft before flight. The Air Force conducts airframe flaw checks and pre-flight aircraft check. In this study, we architect the airframe flaw check system using AI and drones, and the pre-flight aircraft condition check system using the IoT and big data for more precise and detailed check of aircraft condition and flawlessness check.

Development of an ACMI Simulator Based on LVC Integrating Architecture (LVC 통합 아키텍처 기반 실기동급 ACMI 모의기 개발)

  • Jang, Youngchan;Oh, Jihyun;Myung, Hyunsam;Kim, Cheonyoung;Hong, Youngseok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.540-547
    • /
    • 2015
  • This paper describes development contents and flight tests of an ACMI simulator based on LVC integrating architecture. ACMI is the system that provides air combat training and ground bombing training for improving fighting efficiency, that is the live simulation involving real people to operate real systems. ACMI simulator was developed for technic acquisition of LVC interoperability by using data link communication. ACMI simulator simulated maneuvering of a fighter by operating an UAV, a fighter can be distinguished from an UAV by maneuvering characteristics. This study proposes maneuvering simulation method by using flight data of the UAV, and performed its flight test for verifying similarity of fighter maneuvering.

A Study on the Validity of the Prediction of Binaural Parameters by 5 Channel Microphone System (5채널 마이크로폰 시스템을 활용한 공간감 지표 예측의 타당성에 관한 연구)

  • Jang Jae-Hee;Oh Yang-Ki;Jeong Dae-Up;Jeong Hyok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.103-110
    • /
    • 2005
  • Providing adequate amount of spatial impression for spaciousness) has been known to be one of the most important design considerations for the good acoustics of rooms for music. and the measurement, of room acoustics using parameters. such as LEF and IACC, forms an essential part of such evaluation. However. it is unavoidable to use different transducers (figure of eight microphones. head and torso) for the measurement of each parameter and it tends to make the measurement procedure complicated. The Present work tried to provide a simpler way to measure these binaural room acoustic parameters including monaural ones with a single measurement system using both spatial information collected through a 5-channel microphone and a trained neural network. A computer simulation program, CATT-Acoustic V7.2. which allowed us to obtain exactly the same spatial information as a 5-channel microphone was used. since it requires quite a large amount of data for practical training of a neural network. Since each reflection has different energy. delay and direction, energy should be integrated properly. the concept of ray tracing method was applied inversely in this work. Also applying weightings according to the delay times was considered in this work. Finally, predicted results were compared with the measured data md their correlations were analyzed and discussed.

An Implementation of IEEE 1516.1-2000 Standard with the Hybrid Data Communication Method (하이브리드 데이터 통신 방식을 적용한 IEEE 1516.1-2000 표준의 구현)

  • Shim, Jun-Yong;Wi, Soung-Hyouk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1094-1103
    • /
    • 2012
  • Recently, software industry regarding national defense increases system development of distributed simulation system of M&S based to overcome limit of resource and expense. It is one of key technologies for offering of mutual validation among objects and reuse of objects which are discussed for developing these systems. RTI, implementation of HLA interface specification as software providing these technologies uses Federation Object Model for exchanging information with joined federates in the federation and each federate has a characteristic that is supposed to have identical FOM in the federation. This technology is a software which is to provide the core technology which was suggested by the United state's military M&S standard framework. Simulator, virtual simulation, and inter-connection between military weapons system S/W which executes on network which is M&S's core base technology, and it is a technology which also can be used for various inter-connection between S/W such as game and on-line phone. These days although RTI is used in military war game or tactical training unit field, there is none in Korea. Also, it is used in mobile-game, distribution game, net management, robot field, and other civilian field, but the number of examples are so small and informalized. Through this developing project, we developed the core technique and RTI software and provided performance of COTS level to improve communication algorithms.

Walking path design considering with Slope for Mountain Terrain Open space

  • Seul-ki Kang;Ju-won Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.103-111
    • /
    • 2023
  • Mountains area, especially walking in open space is important for special active field which is based on mountain terrain. Recent research on pedestrian-path includes elements about pedestrian and various environment by analyzing network, but it is mainly focusing on limited space except for data-poor terrain like a mountain terrain. This paper proposes an architecture to generate walking path considering the slope for mountain terrain open space through virtual network made of mesh. This architecture shows that it reflects real terrain more effective when measuring distance using slope and is possible to generate mountain walking path using open space unlike other existing services, and is verified through the test. The proposed architecture is expected to utilize for pedestrian-path generation way considering mountain terrain open space in case of distress, mountain rescue and tactical training and so on.