• Title/Summary/Keyword: 가상인체

Search Result 169, Processing Time 0.033 seconds

A Study on Ergonomic Design for Cargo-working Crane Control Room (제품하역기 운전실의 인간공학적 설계에 관한 연구)

  • 송도의
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.87-91
    • /
    • 2003
  • 포항제철소는 제품의 선적 및 하역업무를 위래 13기의 하역기를 운영 중에 있다. 제품하역기의 운전실태는 1명의 작업자가 탑승하여 제품이 놓여질 선박 내 location을 관리한다. 특히, 중량물을 다루는 만큼 안전사고 방지를 위산 고도의 주의를 요하는 작업이다. 그러나 운전실의 위치가 지상 $13\~24m$에 위치해 있어, 하방 관측을 위해 장시간 머리를 구부려야 하므로 작업피로는 물론 요통 발생 가능성이 높다. 또한, 13기 하역기의 제작사 및 제작 시기에 차이가 있어, User Interfare가 각기 다르다. 주기적으로 하역기를 바꿔 탑승하는 작업자로서는 오조작 가능성이 있어 문제점으로 지적되고 있다. 근본적으로는 이동통로 폭의 협소함에 따른 진$\cdot$출입의 문제, 전장품의 부적절한 배치에 따른 작업자 충돌 문제 등, 기본적인 인간공학적 원칙이 반영되지 않은 운전실설계로 제품하역기 작업자의 업무부하가 가중되고 있는 실정이다. 본 연구에서는 인간공학적 설계원칙을 반영하여 제품하역기 운전실을 가상환경으로 제작해보고, 3차원 인제 모형을 실제로 탑승시켜 주요 설계 제약조건의 검증을 실시하였다. 3차원 가상환경 및 인체모형의 제작은 상용 3D Tool인 3ds Max 5와 Anthropos Ergomax라는 프로그램을 이용하였다. 이와같은 방법을 통해, 실제 공사 후에 발견될 문제점에 대한 사전 도출이 가능함은 물론, 보다 인간공학적인 운전실 설계가 이뤄질 수 있었다.

  • PDF

A Study on 2D Pattern Design Module and 3D Cloth Simulation System based on Octree Space Subdivision Method (2차원 패턴 디자인 모듈과 Octree 공간 분할 방법을 이용한 3차원 의복 시뮬레이션 시스템에 관한 연구)

  • Kim, Ju-Ri;Joung, Suck-Tae;Jung, Sung-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.4
    • /
    • pp.527-536
    • /
    • 2007
  • This paper proposes a 3D fashion design system that generates a 3D clothes model by using 2D patterns of clothes and drapes the 3D clothes model on a 3D human model. In the proposed system, 2D patterns of clothes are designed by selecting comer points of 2D mesh. After designing 2D patterns, a 3D clothes model is designed by describing the control points to be connected between 2D patterns. The proposed system reads a 3D human body model file and the designed 3D clothes model and creates a 3D human model putting on the clothes by using the mass-spring model based physical simulation. It calculates collision and reaction between the triangles of human body model and those of clothes for realistic simulation. Because the number of triangles is very large, the collision and reaction processing need a lot of time. To solve this problem, the proposed system decreases the number of collision and reaction processing by using the Octree space subdivision technique. It took a few seconds for generating a 3D human model putting on the designed 3D clothes.

  • PDF

Study for Operation Teaching Machine Using 3D Virtual Reality System (3D가상 현실방식을 사용한 수술교육시스템의 연구)

  • Kang, Byung-Hoon;Kim, Ji-Sook;Kim, Han-Woong
    • Journal of Digital Contents Society
    • /
    • v.17 no.4
    • /
    • pp.287-293
    • /
    • 2016
  • Some studies require sufficient amount of time, spaces, and financial condition for practical exercises and training. In particular for the Medical education, time and space limitation is very high and difficulties occurs, since the practices are done with cadavers (deceased human body). Many alternate 3D Virtual surgery training system exist currently, however the burdensome of obtaining those costly equipments is problematic. Providing the surgical environment as similar to real as possible using 3D Virtual Reality can be a solution to current problems. The effectiveness of training could be maximized with minimized costs without the general interfaces such as keyboard and mouse, but with Oculus Rift and Leap Motion. This paper will develop and practice the 3D Virtual Operation System with two devices to investigate the possibility and expand to other Simulation fields.

The Analysis on the Torso Type Dress Form Developed Through the 3-D Virtual Body Modeling of the Korean Female Fashion Models (국내 여성 패션모델의 3차원 가상인체 모델링을 통한 토르소형 인대 개발과 그 특성 분석)

  • Park, Gin Ah
    • Journal of the Korean Society of Costume
    • /
    • v.65 no.2
    • /
    • pp.157-175
    • /
    • 2015
  • The study was aimed to develop a torso-type dress form representing body features of the female fashion models in Korea. To fulfill this purpose, 5 female fashion models aged between 20 and 26 having the average body measurements of professional fashion models in Korea were selected and their 3-D whole body scanned data were analysed. The 3-D whole body scanning method enabled to generate a virtual female fashion model within the CAD system by measuring the subjects' body shapes and sizes. In addition, the virtual model's body data led the development of a standard female fashion model dress form for the efficient fashion show preparation. In order to manufacture the real dress form for female fashion models, 3-D printing technology was adopted. The consequent results are as follows: (1) the body measurements (unit: cm) of the developed dress form were: biacromion length, 36.0, bust point to bust point, 16.6, front/back interscye lengths, 32.0/33.0, neck point to breast point, 26.0, neck point to breast point to waist line, 41.5, waist front/back lengths, 34.5/38.5, waist to hip length, 24.0, bust circumference, 85.0, underbust circumference, 75.0, waist circumference, 65.0, hip circumference, 92.0. (2) the body measurements differences between the developed and existing dress forms were highlighted with the body measurements of neck point to breast point and waist to hip length. (3) the body shape features of the developed dress form showed that bust, shoulder blade, shoulder slope, abdomen and back waist line to hip line parts were more realistically manufactured.

Contralateral Breast Dose Reduction Using a Virtual Wedge (가상쐐기를 이용한 반대측 유방선량감소)

  • Yeo, In-Hwan;Kim, Dae-Yong;Kim, Tae-Hyun;Shin, Kyung-Hwan;Chie, Eui-Kyu;Park, Won;Lim, Do-Hoon;Huh, Seung-Jae;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.230-235
    • /
    • 2005
  • Purpose: To evaluate the contralateral breast dose using a virtual wedge compared with that using a Physical wedge and an open beam in a Siemens linear accelerator. Materials and Methods: The contralateral breast dose was measured using diodes placed on a humanoid phantom. Diodes were placed at 5.5 cm (position 1), 9.5 cm (position 2), and 14 cm (position 3) along the medial-lateral line from the medial edge of the treatment field. A 6-MV photon beam was used with tangential irradiation technique at 50 and 230 degrees of gantry angle. Asymmetrically collimated $17{\times}10cm$ field was used. for the first set of experiment, four treatment set-ups were used, which were an open medial beam with a 30-degree wedged lateral beam (physical and virtual wedges, respectively) and a 15-degree wedged medial beam with a 15-degree wedged lateral beam (physical and virtual wedges, respectively). The second set of experiment consists of setting with medial beam without wedge, a 15-degree wedge, and a 50-degree wedge (physical and virtual wedges, respectively). Identical monitor units were delivered. Each set of experiment was repeated for three times. Results: In the first set of experiment, the contralateral breast dose was the highest at the position 1 and decreased in order of the position 2 and 3. The contralateral breast dose was reduced with open beam on the medial side ($2.70{\pm}1.46%$) compared to medial beam with a wedge (both physical and virtual) ($3.25{\pm}1.59%$). The differences were larger with a physical wedge ($0.99{\pm}0.18%$) than a virtual wedge ($0.10{\pm}0.01%$) at all positions. The use of a virtual wedge reduced the contralateral breast dose by 0.12% to 1.20% of the proscribed dose compared to a physical wedge with same technique. In the second experiment, the contralateral breast dose decreased in order of the open beam, the virtual wedge, and the physical wedge at the position 1, and it decreased in order of a physical wedge, an open beam, and a virtual wedge at the position 2 and 3. Conclusion: The virtual wedge equipped in a Siemens linear accelerator was found to be useful in reducing dose to the contralateral breast. Our additional finding was that the surface dose distribution from the Siemens accelerator was different from a Varian accelerator.

Stereotactic Target Point Verification in Actual Treatment Position of Radiosurgery (방사선수술시 두개내 표적의 정위적좌표의 치료위치에서의 확인)

  • Yun, Hyong-Geun;Lee, Hyun-Koo
    • Radiation Oncology Journal
    • /
    • v.13 no.4
    • /
    • pp.403-409
    • /
    • 1995
  • Purpose : Authors tried to enhance the safety and accuracy of radiosurgery by verifying stereotacitc target point in actual treatment position prior to irradiation. Materials and Methods : Before the actual treatment, several sections of anthropomorphic head phantom were used to create a condition of unknown coordinates of the target point. A film was sandwitched between the phantom sections and punctured by sharp needle tip. The tip of the needle represented the target point. The head phantom was fixed to the stereotactic ring and CT scan was done with CT localizer attached to the ring. After the CT scanning, the stereotactic coordinates of the target point were determined. The head phantom was secured to accelerator's treatment couch and the movement of laser isocenter to the stereotactic coordinates determined by CT scanning was performed using target positioner. Accelerator's anteroposterior and lateral portal films were taken using angiographic localizers. The stereotactic coordinates determined by analysis of portal films were compared with the stereotactic coordinates previously determined by CT scanning. Following the correction of discrepancy the head phantom was irradiated using a stereotactic technique of several arcs. After the irradiation, the film which was sandwitched between the phantom sections was developed and the degree of coincidence between the center of the radiation distribution with the target point represented by the hole in the film was measured. In the treatment of the actual patients, the way of determining the stereotactic coordinates with CT localizers and angiograuhic localizers was the same as the phantom study. After the correction of the discrepancy between two sets of coordinates, we proceeded to the irradiation of the actual patient. Results : In the phantom study, the agreement between the center of the radiation distribution and the localized target point was very good. By measuring optical density profiles of the sandwitched film along axes that intersected the target point, authors could confirm the discrepancy was 0.3 mm. In the treatment of an actual patient, the discrepancy between the stereotactic coordinates with CT localizers and angiographic localizers was 0.6 mm. Conclusion : By verifying stereotactic target point in actual treatment position prior to irradiation, the accuracy and safety of streotactic radiosurgery procedure were established.

  • PDF

A Comparative Study of Patient Dose and Image Quality according to the Presence or Absence of Grid During Chest PA Radiography using an Auto Exposure Control System (자동 노출 조절장치를 사용한 흉부 후·전 방향 방사선 검사 시 격자 유·무에 따른 환자 선량과 영상품질 비교 연구)

  • So-min Lee;Han-yong Kim;Dong-hwan Kim;Young-Cheol Joo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.573-579
    • /
    • 2023
  • This study compares dose difference between the presence or absence of grid in Chest PA radiography using auto exposure control and compares image quality among presence, absence or virtual grid, and proposes a new clinically useful grid combination for chest radiography. The human body phantom was placed Chest PA position and the dosimeter was placed at T6. The same irradiation conditions and field size were applied. 30 images were obtained in the state in which grid was applied and in the state in which grid was not applied, and an additional 30 images in which the virtual grid was applied to the image without the grid were obtained. Radiation dose was presented to entrance surface dose. The image quality was analyzed by comparing the signal-to-noise and contrast-to-noise ratio. ESD decreased by 48% when the grid was not used, compared to when the grid was used. SNR and CNR increased by 32% and 30% compared to grid use when grid was not used, respectively. In the case of using the virtual grid, it increased by 18% and 16% respectively, compared to the case of using the grid. As a result of this study, it is believed that when using a virtual grid instead of a grid, the quality of the image can be maintained while reducing the patient dose.

A Control method of Left-Right directions by analyzing EEG Signals (뇌파 신호 분석에 의한 좌우 방향 제어 방법)

  • Kim, Hong-Kee;Kim, Ki-Hong;Kim, Jong-Sung;Son, Wook-Ho
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1005-1010
    • /
    • 2006
  • 인체에서 발생하는 생체신호 중에서 뇌파는 신호가 복잡하고 재현이 어려움에도 불구하고 BCI(Brain Computer Interface) 분야에서는 선진국 선두 그룹을 중심으로 획기적인 기술을 개발하고 있다. 또한 BCI 에 대한 개발의 필요성도 손발을 사용하지 못하는 중증 장애인을 중심으로 확대되고 있다. BCI2000 시스템은 이러한 노력으로 탄생하였으며 BCI 선두 그룹을 중심으로 개발 발전되고 있다. 이 시스템 내부에서는 순수 상상에 의한 방향 인식과 가상키보드 등의 작업이 가능하도록 수정 보완 작업이 계속되고 있으며 정기적인 모임을 통해 그 기술을 공유하고 있다. BCI 에서의 선진그룹과 국내 연구 결과에는 많은 기술적 차이가 있지만 본 연구에서는 BCI 에서의 기술 발전에 자극되어 좌우 방향의 이벤트에 대한 뇌파 신호 분석과 이를 통하여 모니터 상의 방향을 제어하는 실험을 실시하였고 그 방법과 결과를 논의한다.

  • PDF

A Study on the dangerous for street righting underground line (가로등 지중전선로의 위험성 연구)

  • Baek, Dong-Hyun;Lee, Jong-Eon;Chun, Ji-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2156_2157
    • /
    • 2009
  • 가로등 누전으로인한 많은 인명피해 발생에따른 가로등 지중전선로의 위험성을 실측한 것으로 지역별 접지저항값은 많은 차이가 있었으며 지락지점으로부터 떨어지면 전위차는 현저히 감소하였다. 실제 대지로 빗물의 유입이 많은 장마철에서도 인접 철구조물로 가상되는 Pipe의 대지전위 상승값은 우려 할 만큼 위험한 수치에 이르지 않았다. 또한 IEC의 안전전압규정은 인체가 완전히 젖어 있는 상태에서 25[V]이하로 규정하고 있는바 이를 확인하였다. 지락지점에서 일정한 거리를 두고 측정한 접지극이나 구조물에 대한 누설전류의 값은 매우 미미하였으며, 지중전선의 지락전류는 220[V]에서 200[mA]까지 허용되어도 가능한 것으로 확인되었다.

  • PDF

A study on 3-D shape measurement for the composition of human bust (인체흉상 합성을 위한 3차원 형상 측정에 관한 연구)

  • 안중근;강영준;최정표;유원재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.220-223
    • /
    • 1997
  • Moire topography method is a well-known non-contacting 3-D measuement method. Recently, the automatic 3-D measurement by moire topography has been required since the method was frequently applied to the engineering and medical fields. 3-D measurement using projection moire topography is very attractive because of it's high measuring speed and high sensitivity. In this paper, using two-wavelength method of projection moire topography tested to measuring object with the 2x-ambiguity problem. Experimental results prove that the proposed scheme is capable of finding absolute fringe orders, so that the 2x-ambiguity problem can be effectively overcome so as to treat large step discontinuities in measured objects.

  • PDF