• Title/Summary/Keyword: 가변 이득 증폭기

Search Result 71, Processing Time 0.029 seconds

Design & Fabrication of a Broadband SiGe HBT Variable Gain Amplifier using a Feedforward Configuration (Feedforward 구조를 이용한 광대역 SiGe HBT 가변 이득 증폭키의 설계 및 제작)

  • Chae, Kyu-Sung;Kim, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5A
    • /
    • pp.497-502
    • /
    • 2007
  • Broadband monolithic SiGe HBT variable gain amplifier with a feedforward configuration have been newly developed to improve bandwidth and dB-linearly controlled gain characteristics. The VGA has been implemented in a $0.35-{\mu}m$ BiCMOS process. The VGA achieves a dynamic gain-control range of 19.6 dB and a 3-dB bandwidth of 4 GHz ($4{\sim}8\;GHz$) with the control-voltage range from 0.6 to 2.6 V. The VGA produces a maximum gain of 9.3 dB at 6 GHz and a output power of -3 dBm at 8 GHz.

dB-Linear CMOS Variable Gain Amplifier for GPS Receiver (dB-선형적 특성을 가진 GPS 수신기를 위한 CMOS 가변 이득 증폭기)

  • Jo, Jun-Gi;Yoo, Chang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.7
    • /
    • pp.23-29
    • /
    • 2011
  • A dB-linearity improved variable gain amplifier (VGA) for GPS receiver is presented. The Proposed dB-linear current generator has improved dB-linearity error of ${\pm}0.15$dB. The VGA for GPS is designed using proposed dB-linear current generator and composed of 3 stage amplifiers. The IF frequency is assumed as 4MHz and the linearity requirement of the VGA for GPS receiver is defined as 24dBm of IIP3 using cascaded IIP3 equation and the VGA satisfies 24dBm when minimum gain mode. The DC-offset voltage is eliminated using DC-offset cancelation loop. The gain range is from -8dB to 52dB and the dB-linearity error satisfies ${\pm}0.2$dB. The 3-dB frequency has range of 35MHz~106MHz for the gain range. The VGA is designed using 0.18${\mu}m$ CMOS process. The power consumption is 3mW with 1.8V supply voltage.

Design of A 2.7-V MMIC SiGe HBT Up-converter and Variable Gain Amplifier for Cellular Band Applications (Cellular 주파수 대역 2.7-V MMIC SiGe HBT 상향 주파수 혼합기와 가변이득 증폭기의 설계)

  • 박성룡;김창우
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.146-149
    • /
    • 2000
  • SiGe HUT뜰 이용하여 Cellular 주파수 대역(824-849 MHz)에서 MMIC 상향 주파수 혼합기와 가변이득 증폭기를 설계하였다. 동작 전압은 2.7 V 이며, 이중평형 구조의 상향 주파수 혼합기는 12 dB의 변환이득, -0.6 dBm의 1dB 이득압축 출력전력, 30 dB 이상의 LO-RF 단자 격리도 특성, 1.25의 LO-VSWR. 1.34의 RF-VSWR을 가지며, 상호컨덕턴스형 가변이득 증폭기는 35 dB의 최대 선형이득, 13 dBm의 1dB 이득압축 출력전력, 42dB의 가변이득, 23dB의 3차 상호변조 교점 출력전력(OIP$_3$), 1.27의 입력 VSWR, 1.1의 출력 VSWR 특성을 보인다.

  • PDF

10MHz/77dB dynamic range CMOS linear-in-dB variable gain amplifiers (10MHz/77dB 다이내믹 영역을 가진 선형 가변 이득 증폭기)

  • Cha, Jin-Youp;Yeo, Hwan-Seok;Kim, Do-Hyung;Burm, Jin-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.16-21
    • /
    • 2007
  • CMOS variable gain amplifier (VGA) IC designs for the structure monitoring systems of the telemetries were developed. A three stage cascaded VGA using a differential amplifier and a linear-in-dB controller is presented. A proposed VGA is a modified version of a conventional VGA such that the gain is controlled in a linear-in-dB fashion through the current ratio. The proposed VGA circuit introduced in this paper has a dynamic range of 77 dB with 1.5 dB gain steps. It also achieved a gain error of less than 1.5 dB over 77 dB gain range. The VGA can operate up to 10MHz dissipating 13.8 mW from a single 1.8 V supply. The core area of the VGA fabricated in a Magnachip $0.18{\mu}m$ standard CMOS process was about $430{\mu}m{\times}350{\mu}m$. According to measurement results, we can verify that the proposed method is reasonable with regard to the enhancement of dynamic range and the better linear-in-dB characteristics.

A VHF/UHF-Band Variable Gain Low Noise Amplifier for Mobile TV Tuners (모바일 TV 튜너용 VHF대역 및 UHF 대역 가변 이득 저잡음 증폭기)

  • Nam, Ilku;Lee, Ockgoo;Kwon, Kuduck
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.90-95
    • /
    • 2014
  • This paper presents a VHF/UHF-band variable gain low noise amplifier for multi-standard mobile TV tuners. A proposed VHF-band variable gain amplifier is composed of a resistive shunt-feedback low noise amplifier to remove external matching components, a single-to-differential amplifier with input PMOS transcoductors to improve low frequency noise performance, a variable shunt-feedback resistor and an attenuator to control variable gain range. A proposed UHF-band variable gain amplifier consists of a narrowband low noise amplifier with capacitive tuning to improve noise performance and interference rejection performance, a single-to-differential with gm gain control and an attenuator to adjust gain control range. The proposed VHF-band and UHF-band variable gain amplifier were designed in a $0.18{\mu}m$ RF CMOS technology and draws 22 mA and 17 mA from a 1.8 V supply voltage, respectively. The designed VHF-band and UHF-band variable gain amplifier show a voltage gain of 27 dB and 27 dB, a noise figure of 1.6-1.7 dB and 1.3-1.7 dB, OIP3 of 13.5 dBm and 16 dBm, respectively.

A Variable-Gain Low-Voltage LNA MMIC Based on Control of Feedback Resistance for Wireless LAN Applications (피드백 저항 제어에 의한 무선랜용 가변이득 저전압구동 저잡음 증폭기 MMIC)

  • Kim Keun Hwan;Yoon Kyung Sik;Hwang In Gab
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10A
    • /
    • pp.1223-1229
    • /
    • 2004
  • A variable-gain low-voltage low noise amplifier MMIC operating at 5GHz frequency band is designed and implemented using the ETRI 0.5$\mu\textrm{m}$ GaAs MESFET library process. This low noise amplifier is designed to have the variable gain for adaptive antenna array combined in HIPERLAN/2. The feedback circuit of a resistor and channel resistance controlled by the gate voltage of enhancement MESFET is proposed for the variable-gain low noise amplifier consisted of cascaded two stages. The fabricated variable gain amplifier exhibits 5.5GHz center frequency, 14.7dB small signal gain, 10.6dB input return loss, 10.7dB output return loss, 14.4dB variable gain, and 2.98dB noise figure at V$\_$DD/=1.5V, V$\_$GGl/=0.4V, and V$\_$GG2/=0.5V. This low noise amplifier also shows-19.7dBm input PldB, -10dBm IIP3, 52.6dB SFDR, and 9.5mW power consumption.

Design of MMIC Variable Gain LNA Using Behavioral Model for Wireless LAM Applications (거동모델을 이용한 무선랜용 MMIC 가변이득 저잡음 증폭기 설계)

  • Park, Hun;Yoon, Kyung-Sik;Hwang, In-Gab
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.697-704
    • /
    • 2004
  • This paper describes the design and fabrication of an MMIC variable gain LNA for 5GHz wireless LAN applications, using 0.5${\mu}{\textrm}{m}$ gate length GaAs MESFET transistors. The advantages of high gain and low noise performance of E-MESFETS and excellent linear performance of D-MESFETS are combined as a cascode topology in this design. Behavioral model equations are derived from the MESFET nonlinear current voltage characteristics by using Turlington's asymptote method in a cascode configuration. Using the behavioral model equations, a 4${\times}$50${\mu}{\textrm}{m}$ E-MESFET as a common source amplifier and a 2${\times}$50${\mu}{\textrm}{m}$ D-MESFET as a common gate amplifier are determined for the cascode amplifier. The fabricated variable gain LNA shows a noise figure of 2.4dB, variable gain range of more than 17dB, IIP3 of -4.8dBm at 4.9GHz, and power consumption of 12.8mW.

Design of Variable Gain Amplifier without Passive Devices (수동 소자를 사용하지 않는 가변 이득 증폭기 설계)

  • Cho, Jong Min;Lim, Shin Il
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.1-8
    • /
    • 2013
  • This paper presents a variable gain amplifier(VGA) without passive devices. This VGA employes the architecture of current feedback amplifier and variable gain can be achieved by using the GM ratios of two trans-conductance(gm) circuits. To obtain linearity and high gain, it uses current division technique and source degeneration in feedback GM circuits. Input trans-conductance(GM) circuit was biased by using a tunable voltage controller to obtain variable gain. The prototype of the VGA is designed in $0.35{\mu}m$ CMOS technology and it is operating in sub-threshold region for low power consumption. The the gain of proposed VGA is varied from 23dB to 43dB, and current consumption is $2.82{\mu}A{\sim}3{\mu}A$ at 3.3V. The area of VGA is 1$120{\mu}m{\times}100{\mu}m$.

All-optical gain control in erbium-doped fiber amplifier using a fiber grating (광섬유격자를 이용한 Erbium 첨가 광섬유 증폭기의 광학적 이득제어)

  • 박희갑
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.58-62
    • /
    • 1997
  • A new, simple lasing loop configuration employing a fiber grating was proposed and demonstrated for all-optical gain control of erbium-doped fiber amplifier. The lasing loop was designed such that the fiber grating acts as a notch filter to cutoff the lasing light as well as selects the lasing wavelength. The operating gain was clamped to the same level as the loop loss and it could be varied with a tunable directional coupler in the loop. It is believed that this type of gain-controlled erbiumdoped fiber amplifier can have several advantages when used in wavelength-division-multiplexed transmission systems.

  • PDF

Design of Variable Gain Receiver Front-end with Wide Gain Variable Range and Low Power Consumption for 5.25 GHz (5.25 GHz에서 넓은 이득 제어 범위를 갖는 저전력 가변 이득 프론트-엔드 설계)

  • Ahn, Young-Bin;Jeong, Ji-Chai
    • Journal of IKEEE
    • /
    • v.14 no.4
    • /
    • pp.257-262
    • /
    • 2010
  • We design a CMOS front-end with wide variable gain and low power consumption for 5.25 GHz band. To obtain wide variable gain range, a p-type metal-oxide-semiconductor field-effect transistor (PMOS FET) in the low noise amplifier (LNA) section is connected in parallel. For a mixer, single balanced and folded structure is employed for low power consumption. Using this structure, the bias currents of the transconductance and switching stages in the mixer can be separated without using current bleeding path. The proposed front-end has a maximum gain of 33.2 dB with a variable gain range of 17 dB. The noise figure and third-order input intercept point (IIP3) are 4.8 dB and -8.5 dBm, respectively. For this operation, the proposed front-end consumes 7.1 mW at high gain mode, and 2.6 mW at low gain mode. The simulation results are performed using Cadence RF spectre with the Taiwan Semiconductor Manufacturing Company (TSMC) $0.18\;{\mu}m$ CMOS technology.)