• Title/Summary/Keyword: 가변구조제어

Search Result 418, Processing Time 0.022 seconds

Active/Reactive Power Control of Doubt Fed Induction Generator (가변속 권선형 유도 발전기의 유효전력 및 무효전력 동시제어)

  • Lee, H.J.;Park, S.J.;Kim, Y.S.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.224-226
    • /
    • 2003
  • 권선형 유도 발전기는 고정자뿐만 아니라 회전자에도 전력을 공급할 수 있는 이중여자의 구조를 가지므로 제어의 폭이 넓은 장점을 가진다. 본 연구에서 구성하는 권선형 유도발전기 시스템은 계통 연계형으로 유도발전기의 고정자는 계통에 직접 연결되고, 회전자는 AC/DC/AC 컨버터를 통해 계통과 연결된다. 간 연구는 이러한 시스템에서 가변속의 동력아래 고정자측 유효전력과 무효전력을 회전자의 d-q 독립제어에 의하여 동시제어가 이루어지도록 하는 연구이다. 본 연구에서는 종래의 유도발전기 시스템에서 터빈의 속도가 동기속도 이상이 되어야만 일정한 전력을 얻을 수 있는 최대전력 점 트래킹 방식 보다 넓은 운전 범위인 동기속도 이하의 영역에서도 회전자 전력변환장치 용량이내에서 일정 전력제어가 가능하도록 하였다.

  • PDF

The Telemetry Transmitter with Variable Data rate Transmission (가변 데이터 전송 가능한 텔레메트리(Telemetry) 송신기)

  • Kim, Jang-Hee;Hong, Seung-Hyun;Park, Byong-Kwan;Kim, Bok-ki;Kim, Hyo-Jong
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.1
    • /
    • pp.53-60
    • /
    • 2020
  • In this paper, We have studied the structure of a Telemetry Transmitter capable of transmitting variable data rates. This paper proposed a structure combining variable pre-modulation filter with cutoff characteristic with variable input sample rate converter. Variable pre-modulation filter has the same characteristics as pre-modulation filter and is converted to a constant sampling rate without structural changes according to the variable input data rate. We propose a software program that actively controls variable pre-modulation filter and variable input sample rate converter to respond to real-time changing data.

Design of Controller for Nonlinear Multivariable System Using Dynamic Neural Unit (동적신경망을 이용한 비선형 다변수 시스템의 제어기 설계)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1178-1183
    • /
    • 2008
  • The variable structure control(VSC) with sliding mode is an important and interesting topic in modern control of nonlinear systems. However, the discontinuous control law in VSC leads to undesirable chattering in practice. As a method solving this problem, in this paper, we propose a scheme of the VSC with neural network sliding surface. A neural network sliding surface with boundary layer is employed to solve discontinuous control law. The proposed controller can eliminate the chattering problem of the conventional VSC. The effectiveness of the proposed control scheme is verified by simulation results.

Estimation of the Asymptotic Stability Region for the Uncertain Variable Structure Systems with Bounded Controllers (크기가 제한된 제어기를 갖는 가변구조제어 시스템의 점근 안정 영역 추정)

  • 최한호;국태용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.616-622
    • /
    • 2003
  • This paper deals with the problem of estimating the asymptotic stability region(ASR) of uncertain variable structure systems with bounded controllers. Using linear matrix inequalities(LMIs) we estimate the ASR and show the exponential stability of the closed-loop control system in the estimated ASR. We give a simple LMI-based algorithm to get estimates of the ASR. We also give a synthesis algorithm to design a switching surface which will make the estimated ASR big. Finally, we give numerical examples in order to show that our method can give better results than the previous ones for a certain class of uncertain variable structure systems with bounded controllers.

Design of a Variable Structure Controller with Nonlinear Fuzzy Sliding Surgaces (비선형 퍼지 슬라이딩면을 갖는 가변 구조 제어기의 설계)

  • 이희진;강형진;김정환;박민용
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.21-28
    • /
    • 1998
  • This study develops a variable structure controller using the time-varying nonlinear sliding surface instead of the fixed sliding surface, which has been the robustness against parameter variations and extraneous disturbance during the reaching phase. By appling TS fuzzy algorithm to the regulation of the rionlinear sliding surface, the reaching time of the system trajectory is faster than the fixed method. This proposed scheme has better performance than the conventional method in reaching time, parameter variation and extraneous disturbance. To demonstrate its performance, the proposed control algorithm is applied to a rotational inverted pendulum.

  • PDF

A Study on Time-Varying Sliding Regime of VSC System (가변구조제어계의 시변 슬라이딩 레짐에 관한 연구)

  • Kim, Joong-Wan;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.2
    • /
    • pp.30-39
    • /
    • 1989
  • Variable structure control (VSC) systems control the state vectors using sliding regime (SR) constructed switching logic, switching plane and control law. Saturation function switching logic is used to improve the drawback which occurs in traditional sign function switching logic. Switching plane with time-varying parameter is proposed to improve the drawback which occurs in switching plane with constant parameter and it is suggested the control law which has time-varying parameter. The stability of VSC system controlled by proposed time-varying SR is discussed, and the good control behavior was shown through computer simulation using proposed SR.

  • PDF

A Design of Variable Structure Controller for the General Single Input Systems with Unmeasurable State Variables (측정불가능한 상태변수를 갖는 일반적인 단일 입력 계통에 대한 가변구조 제어기의 설계)

  • 박귀태;최중경
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.773-783
    • /
    • 1992
  • There have been several control schemes for the single input systems with unmeasurable state variables using variable structure control(VSC) theory. However, each of them is a study on the systems which can be represented in the phase canonical form or non-phase canonical form dynamic equation separately. As these control algorithms have difficulties in practical application by its theoretical limitations, in this paper we propose a new VSC theory which overcomes those limitations, in this paper we propose a new VSC theory which overcomes those limitations of proposed schemes. This new control scheme can be realized for the general linear systems which have unmeasurable state variables. And the switching function of this VSS algorithm consists of measurable state variable function(reduced-order switching function) and its derivatives. Also in the construction of control imput only measurable state variables are used.

  • PDF

The Design of Variable Structure Controller for the System in Phase Canonical Form with Incomplete State Measurements (비 측정 상태변수를 갖는 위상 표준형계통에 대한 가변구조 제어기의 설계)

  • 박귀태;최중경
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.8
    • /
    • pp.902-913
    • /
    • 1992
  • There have been several control schemes for the single input systems with unmeasurable state variables using variable structure control(VSC) theory. In the previous VSC, the systems must be represented in phase canonical form and the complete measurements for each state variable must be assumed. In order to eliminate these restrictions several VSC methods were proposed. And especially for the systems in phase canonical form with unmeasurable state variables, the reduced order switching function algorithm was proposed. But this method has many drawbacks and can not be used in the case of general form (not phase canonical form) dynamic system. Therefore this paper propose new construction method of switching fuction for the systems in phase canonical form, which reduce the restriction of reduced order switching function algorithm. And this algorithm can be realized for any state representation and adopted in the systems where not all states are available for switching function synthesis or control.

  • PDF

Design of Variable Gain Receiver Front-end with Wide Gain Variable Range and Low Power Consumption for 5.25 GHz (5.25 GHz에서 넓은 이득 제어 범위를 갖는 저전력 가변 이득 프론트-엔드 설계)

  • Ahn, Young-Bin;Jeong, Ji-Chai
    • Journal of IKEEE
    • /
    • v.14 no.4
    • /
    • pp.257-262
    • /
    • 2010
  • We design a CMOS front-end with wide variable gain and low power consumption for 5.25 GHz band. To obtain wide variable gain range, a p-type metal-oxide-semiconductor field-effect transistor (PMOS FET) in the low noise amplifier (LNA) section is connected in parallel. For a mixer, single balanced and folded structure is employed for low power consumption. Using this structure, the bias currents of the transconductance and switching stages in the mixer can be separated without using current bleeding path. The proposed front-end has a maximum gain of 33.2 dB with a variable gain range of 17 dB. The noise figure and third-order input intercept point (IIP3) are 4.8 dB and -8.5 dBm, respectively. For this operation, the proposed front-end consumes 7.1 mW at high gain mode, and 2.6 mW at low gain mode. The simulation results are performed using Cadence RF spectre with the Taiwan Semiconductor Manufacturing Company (TSMC) $0.18\;{\mu}m$ CMOS technology.)

A Robust Tracking Control for Robotic Manipulators Using Sliding Modes (슬라이딩 모드를 이용한 로봇의 강건 추적제어)

  • Choi, Seung-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.18-28
    • /
    • 1992
  • 시스템의 모델링 과정에서 발생될 수 있는 불확실성(uncertainty) 혹은 미지의 가반중량을 비롯한 외란에 의해 발생되는 불확실성 등을 갖고있는 로봇의 강건 추적제어기 설계를 위해 가변구조시스템(variable structure system) 이론을 적용하였다. 시스템 방정식과 연계하여 슬라이딩 모드가 존재하기 위한 조건을 구했으며, 입력 에 대한 불확실성은 매칭조건(matching condition)을 가정하여 다루었다. 기존의 방법에 비해 제어기 설계과정이 간단 명료하며 요구되는 궤적에 대한 추적제어 효과 또한 매우 우수함을 컴퓨터 시뮬레이션을 통해 입증하였다.

  • PDF