• Title/Summary/Keyword: 가동온도

Search Result 234, Processing Time 0.023 seconds

Development of a Short-term Failure Assessment of High Density Polyethylene Pipe Welds - Application of the Limit Load Analysis - (고밀도 폴리에틸렌 융착부에 대한 단기간 파손 평가법 개발 - 한계하중 적용 -)

  • Ryu, Ho-Wan;Han, Jae-Jun;Kim, Yun-Jae;Kim, Jong-Sung;Kim, Jeong-Hyeon;Jang, Chang-Heui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.405-413
    • /
    • 2015
  • In the US, the number of cases of subterranean water contamination from tritium leaking through a damaged buried nuclear power plant pipe continues to increase, and the degradation of the buried metal piping is emerging as a major issue. A pipe blocked from corrosion and/or degradation can lead to loss of cooling capacity in safety-related piping resulting in critical issues related to the safety and integrity of nuclear power plant operation. The ASME Boiler and Pressure Vessel Codes Committee (BPVC) has recently approved Code Case N-755 that describes the requirements for the use of polyethylene (PE) pipe for the construction of Section III, Division 1 Class 3 buried piping systems for service water applications in nuclear power plants. This paper contains tensile and slow crack growth (SCG) test results for high-density polyethylene (HDPE) pipe welds under the environmental conditions of a nuclear power plant. Based on these tests, the fracture surface of the PENT specimen was analyzed, and the fracture mechanisms of each fracture area were determined. Finally, by using 3D finite element analysis, limit loads of HDPE related to premature failure were verified.

A Study of Dexibuprofen Loaded Solid Dispersion Using Rotary Hot-melt Granulation (회전식 고온용융과립법을 이용한 덱시부프로펜 함유 고체분산체 연구)

  • Kim, Dong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.595-600
    • /
    • 2020
  • The purpose of this paper was to prepare and evaluate solid dispersions (SD) that can increase the dissolution rate of dexibuprofen as a model drug with low solubility in water using saccharides and sugar alcohols as dispersion materials. DSC, XRD, content and content uniformity test, dissolution test, and disintegration test were conducted for physicochemical evaluation of the prepared SD. For the results, it was confirmed using differential scanning calorimetry that fructose, which has a melting point around 120 ℃ of the device operating temperature range, is a suitable excipient for the preparation of SD by the rotary hot-melt granulation (RHMG) method. X-ray diffraction analysis was conducted to confirm that the crystallinity of dexibuprofen was reduced. Disintegration test of the prepared tablet using SD-containing dexibuprofen and fructose confirmed a very fast disintegration time within 1~2 seconds and also showed that the dissolution rate was about 20% faster than that of the dexibuprofen raw material. Dexibuprofen with reduced crystallinity by SD confirmed through the RHMG method can be used to increase the dissolution rate of the drug and increase the disintegration time of the tablet. Thus, it can be used in the manufacturing of various solid preparations.

Construction of the Smoke Exhaust System and Its Applicability by the Fire Model Test for a Bidirectional Tunnel (대면교행터널에서 배연시스템의 구축과 화재모형실험에 의한 적정성 평가)

  • Lee Sang-Eun;Lee Chang-Woo
    • Tunnel and Underground Space
    • /
    • v.15 no.6 s.59
    • /
    • pp.452-461
    • /
    • 2005
  • In a bidirectional tunnel, the accident rate is 1.5 times as high as that of one directional tunnel , the risk of a fire is increased. On fire, there is a problem that the jet fan should not be operated until completion of refuge. To be special, as the great damages occur owing to the expansion of smoke in long tunnels, there is a need to minimize fatality by constructing cross passage and smoke removal system. This study aims at verifying the efficiency of smoke exhaust system through fire propagation simulation as well as scale model test. The results show that completion of escape through emergency exit requires 335 seconds, while addition of smoke exhaust system reduce the escape time to 185 seconds. Also, near the fire source temperature decreased by about $60^{\circ}C$. Without the exhaust system, fire propagation speed was in the range of 0.36 and 0.82 m/s, and it dropped to $0.27\~0.58\;m/s$ with the exhaust system on. Taking into account the escape speed of tunnel users, usually $0.7\~1.0\;m/s$, the emergency exit built every 150m is sufficient for the safe egress. The ultimate goal of this study is to provide fundamental information for the smoke exhaust system in bidirectional tunnels.

Autothermal Reforming Reaction at Fuel Process Systems of 1Nm3/h (1 Nm3/h급 연료 변환시스템에서 메탄의 자열 개질반응)

  • Koo, Jeong-Boon;Sin, Jang-Sik;Yang, Jeong-Min;Lee, Jong-Dae
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.802-807
    • /
    • 2012
  • The autothermal reforming of methane to syngas has been carried out in a reactor charged with both a Ni (15 wt%)-Ru (1 wt%)/$Al_2O_3$-MgO metallic monolith catalyst and an electrically-heated convertor (EHC). The standalone type reactor has a start-up time of less than 2 min with the reactant gas of $700^{\circ}C$ fed to the autothermal reactor. The $O_2/CH_4$ and $H_2O/CH_4$ ratio governed the methane conversion and temperature profile of reactor. The reactor temperature increased as the reaction shifted from endothermic to exothermic reaction with decreasing $H_2O/CH_4$ ratio. Also the amount of $CO_2$ in the products increases with increasing $H_2O/CH_4$ ratio due to water gas shift reaction. The 97% of $CH_4$ conversion was obtained and the reactor temperature was maintained $600^{\circ}C$ at the condition of $GHSV=10,000\;h^{-1}$ and feed ratio ($H_2O/CH_4=0.6$ and $O_2/CH_4=0.5$). In this condition, the maximum flow rate of the syngas generated from the reactor charged with 170 cc of the metallic monolith catalyst is $0.94\;Nm^3/h$.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Power generation and Stream - Design and Operation Guideline (바이오가스 이용 기술지침 마련을 위한 연구(III) - 기술지침(안) 중심으로)

  • Moon, HeeSung;Bae, Jisu;Pack, Hoyeun;Jeon, Taewan;Lee, Younggi;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.95-103
    • /
    • 2018
  • As a guideline for desulfurization and dehumidification pretreatment facility for optimizing utilization of biogas, the $H_2S$ concentration is set at 150 % which can be treated with iron salts, dehumidification is the optimum value for generator operation, and the relative humidity applied at the utilization of biogas in EU is set at 60 %. We have set up the generator facility guidelines to optimize utilization of biogas. The appropriate amount of biogas should be at least 90 % of the total gas generation, and the capacity of generator facility should be set at 20~30 %. In order to equalize the pressure of the incoming gas the generator, a gas equalization tank should be installed and the generator room average temperature should be kept at $45^{\circ}C$ or less. Since the gas is not produced at a certain methane concentration in the digester, the efficiency is lowered. Therefore, it is required to install an air fuel ratio control system according to the change in methane concentration. Therefore, it is necessary to compensate for the disadvantages of biogasification facilities of organic waste resources and optimize utilization of biogas and improve operation of facilities. This study was conducted to optimize biogas utilization of type of organic waste(containing sewage sludge and food waste, animal manure), investigate the facilities problem and propose design, operation guidelines such as pre-treatment facilities and generators.

Repeated Fed-Batch Fermentation of Wheat Flour Solution by Mixed Lactic Acid Bacteria (혼합 젖산균을 이용한 밀가루 용액의 반복 유가식 발효)

  • Kim, Sang-Yong;Noh, Bong-Soo;Oh, Deok-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.343-347
    • /
    • 1997
  • Effect of culture conditions on the fermentation of wheat flour solution by mixed lactic acid bacteria of Lactobacillus brevis, L. fermentum and L. plantarum was investigated. The optimum temperature for the fermentation of wheat flour solution was $35^{\circ}C$ because pH decreased the lowest value and TTA (total titrable acidity) increased the highest value at this temperature. In aerobic condition, fermentor was purged with air at 1.0 vvm and was purged with nitrogen gas at 1.0 vvm in anaerobic condition. The decrease of pH and the increase of TTA in aerobic condition were higher than those in anaerobic condition. In aerobic condition, the optimum condition of oxygen supply was found to be oxygen transfer rate coefficient of $60\;hr^{-1}$ which corresponded to agitation speed of 250 rpm in a 5 L fermentor. Repeated fed-batch cultures were performed using pH-stat in order to increase the productivity of fermented wheat flour. With increasing the repeated fraction of culture volume, mean cycle time increased but maximum operation time decreased. However, the volume of produced broth per culture volume per time and total volume of produced broth per culture volume were maximum at the repeated fraction of culture volume of 20%. In a repeated fed-batch fermentation of wheat flour solution using mixed lactic acid bacteria, the culture condition was optimum at temerature of $35^{\circ}C$, aeration rate of 1.0 vvm, oxygen transfer rate coefficient of $60\;hr^{-1}$, and repeated fraction of culture volume of 20%.

  • PDF

Failure Analysis and Heat-resistant Evaluation of Electric Fuel Pump for Combat Vehicle (전투차량용 전기식 연료펌프의 고장분석 및 내열성능 평가)

  • Kwak, Daehwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.634-640
    • /
    • 2020
  • Failure analysis and heat-resistant were performed for an electric fuel pump that is installed in the fuel tank to transfer fuel to the engine of combat vehicles. The fuel pump with a DC motor was disassembled and inspected to determine the cause of failure. The failure phenomenon was classified into three categories based on observations of the inside of the housing: burnt winding, quick brush abrasion, and fuel leak into the pump. Based on the inspection results, it was estimated that overheating was the main cause of failure. The thermal test was conducted under the no-load condition in 24 hours, and the thermal sensor was installed on the stator surface and the brush holder to check the possibility of damage to the winding due to overheating. When the ambient temperature of the fuel pump was set to 68 ℃, the stator temperature increased to 135.9 ℃, and the winding of the motor was almost damaged. The test results confirmed the lack of heat resistance of fuel pump windings, and suggested that the type F of insulation class (below 155 ℃) of the windings and varnish should be replaced with type C or higher that can be used above 180 ℃.

Conservation Environmental Assessment and Microbial Distribution of the Songsan-ri Ancient Tombs, Gongju, Korea (공주 송산리 고분 내 미생물 분포 및 보존환경 연구)

  • Lee, Min Young;Kim, Dae Woon;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.30 no.2
    • /
    • pp.169-179
    • /
    • 2014
  • After occurrence of Cyanobacteria in 1997, Songsan-ri tombs located in Gonju have been investigated to monitor for biological damage. The room temperature of Tomb No.6 was $18.6{\sim}19.8^{\circ}C$ and the relative humidity was 94.3~99.9%. The temperature of Royal Tomb of King Muryeong was $17.3{\sim}18.53^{\circ}C$ and the relative humidity was 73.2~96.45%. The variation of relative humidity increased after setting up air vents. If the outside temperature increases, dew condensation occurs on the floor and the north side. When conditioning equipment operates, the maximum temperature differences between walls is $2.8^{\circ}C$. Bacteria from the air of the tomb and on the surface of the walls outnumbered fungi. 20 species of fungi including Alternaria sp., Aspergillus sp., Penicillium sp., and 19 species of bacteria including Pseudomonas sp., Arthrobacter sp., are identified. Microbes in the tombs may damage cultural heritage. The growth possibility of microbes should be estimated because the microbes in the tombs may damage mural painting. The interrelation between microenvironmental condition and biological damage of mural painting should be researched to come up with an long-term conservation method.

Distance Measurement of Small Moving Object using Infrared Stereo Camera (적외선 스테레오 카메라를 이용한 소형 이동체의 거리 측정)

  • Oh, Jun-Ho;Lee, Sang-Hwa;Lee, Boo-Hwan;Park, Jong-Il
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.53-61
    • /
    • 2012
  • This paper proposes a real-time distance measurement system of high temperature and high speed target using infrared stereo camera. We construct an infrared stereo camera system that measure the difference between target and background temperatures for automatic target measurement. First, the proposed method detects target region based on target motion and intensity variation of local region using difference between target and background temperatures. Second, stereo matching by left and right target information is used to estimate disparity about real-time distance of target. In the proposed method using infrared stereo camera system, we compare distances in three dimension trajectory measuring instrument and in infrared stereo camera measurement. In this experiment from three video data, the result shows an average 9.68% distance error rate. The proposed method is suitable for distance and position measurement of varied targets using infrared stereo system.

A Study on Cooling Performance and Exergy Analysis of Desiccant Cooling System in Various Regeneration Temperature and Outdoor Air Conditions (재생온도와 외기조건 변화에 따른 제습 냉방시스템의 냉방 성능 및 엑서지 해석에 관한 연구)

  • Lee, Jang Il;Hong, Seok Min;Byun, Jae Ki;Choi, Young Don;Lee, Dae Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.413-421
    • /
    • 2014
  • Desiccant cooling system is an air conditioning system that uses evaporative cooler to cool air and it can perform cooling by using heat energy only without electrically charged cooler. Thus, it can solve many problems of present cooling system including the destruction of ozone layer due to the use of CFC[chloro fluoro carbon] affiliated refrigerants and increase of peak power during summer season. In this study, cooling performance and exergy analysis was conducted in order to increase efficiency of desiccant cooling system. Especially, using exergy analysis based on the second law of thermodynamics can resolve the issue related to system efficiency in a more fundamental way by analyzing the cause of exergy destruction both in whole system and each component. The purpose of this study is to evaluate COP[coefficient of performance], cooling capacity and exergy performance of desiccant cooling system incorporating a regenerative evaporative cooler in various regeneration temperature and outdoor air conditions.