DOI QR코드

DOI QR Code

Autothermal Reforming Reaction at Fuel Process Systems of 1Nm3/h

1 Nm3/h급 연료 변환시스템에서 메탄의 자열 개질반응

  • 구정분 ((주)알티아이엔지니어링 기술연구소) ;
  • 신장식 ((주)알티아이엔지니어링 기술연구소) ;
  • 양정민 (충북대학교 화학공학과/산업과학기술연구소) ;
  • 이종대 (충북대학교 화학공학과/산업과학기술연구소)
  • Received : 2012.05.30
  • Accepted : 2012.06.30
  • Published : 2012.10.01

Abstract

The autothermal reforming of methane to syngas has been carried out in a reactor charged with both a Ni (15 wt%)-Ru (1 wt%)/$Al_2O_3$-MgO metallic monolith catalyst and an electrically-heated convertor (EHC). The standalone type reactor has a start-up time of less than 2 min with the reactant gas of $700^{\circ}C$ fed to the autothermal reactor. The $O_2/CH_4$ and $H_2O/CH_4$ ratio governed the methane conversion and temperature profile of reactor. The reactor temperature increased as the reaction shifted from endothermic to exothermic reaction with decreasing $H_2O/CH_4$ ratio. Also the amount of $CO_2$ in the products increases with increasing $H_2O/CH_4$ ratio due to water gas shift reaction. The 97% of $CH_4$ conversion was obtained and the reactor temperature was maintained $600^{\circ}C$ at the condition of $GHSV=10,000\;h^{-1}$ and feed ratio ($H_2O/CH_4=0.6$ and $O_2/CH_4=0.5$). In this condition, the maximum flow rate of the syngas generated from the reactor charged with 170 cc of the metallic monolith catalyst is $0.94\;Nm^3/h$.

본 연구에서는 메탄으로부터 합성가스를 만드는 자열 개질(Autothermal reforming)반응 특성을 Ni (15 wt%)-Ru (1 wt%)/$Al_2O_3$-MgO 금속모노리스 촉매체와 전기 발열식 촉매를 사용하여 조사하였다. 자체 가동 형 반응기는 자열 개질 반응기에 $700^{\circ}C$ 반응물을 공급하는데 걸리는 start-up 시간이 2분 이내였다. 반응물의 $O_2/CH_4$$H_2O/CH_4$ 비가 메탄의 전환율과 반응기의 온도 분포에 미치는 영향은 매우 크다. 반응기의 온도는 $H_2O/CH_4$ 비가 감소할수록 흡열반응에서 발열반응으로 전환되어 증가한다. 또한 $H_2O/CH_4$ 비가 증가함에 따라 수성가스화 전이반응에 의하여 생성물 중에 $CO_2$양이 증가한다. $GHSV=10,000\;h^{-1}$, 반응물 조성($H_2O/CH_4=0.6$$O_2/CH_4=0.5$)의 자열 개질반응에서, 97%의 메탄의 전환율을 얻었으며, 반응기의 온도는 $600^{\circ}C$로 유지되었다. 이 반응조건에서 170 cc 금속모노리스 촉매체를 충진한 반응기에서 자열개질 반응으로 생성된 최대 합성가스의 유량은 $0.94\;Nm^3/h$ 이었다.

Keywords

References

  1. Lee, T. J., Cho, K. T. and Lee, J. D., "Autothermal Reforming of Methane using Metallic Monolith Catalyst," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 45(6), 663-668(2007).
  2. Kang, M. G., Lee, T. J. and Lee, J. D., "Influence of $Ni/CeO_{2}-ZrO_{2}$ Catalysts on Methane Autothermal Reforming," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 47(1), 17-23(2009).
  3. Lee, C. H., Lee, T. J., Shin, J. S. and Lee, J. D., "Autothermal Reforming Reaction of Methane using $Ni-Ru/Al_{2}O_{3}-MgO$ Metallic Monolith Catalysts," J. Korean oil Chemists' Soc., Ion, 28(3), 321-328(2011).
  4. Lindström, B. and Pettersson, L. J., "Development of a Methanol Fuelled Reformer for Fuel Cell Applications," J. Power Sources, 118(1-2) 71-78(2003). https://doi.org/10.1016/S0378-7753(03)00064-8
  5. Jung, H., Yoon, W. L., Lee, H., Park, J. S., Shin, J. S., La, H. W. and Lee, J. D., "Fast Start-up Reactor for Partial Oxidation of Methane with Electrically-heated Metallic Monolith Catalyst," J. Power Sources, 124(1) 76-80(2003). https://doi.org/10.1016/S0378-7753(03)00604-9
  6. Santos, D. C. R. M., Madeira, L. and Passos, F. B., "The Effect of the Addition of $Y_{2}O_{3}$ to $Ni-Al_{2}O_{3}-MgO$ Catalysts on the Autothermal Reforming of Methane," Catal. Today, 149(3-4) 401-406(2010). https://doi.org/10.1016/j.cattod.2009.06.015
  7. Chen, L., Zhu, Q. and Wuab, R., "Effect of Co-Ni Ratio on the Activity and Stability of Co-Ni Bimetallic Aerogel Catalyst for Methane Oxy-$CO_{2}$ Reforming," Int. J. Hydrogen Energy., 36(3) 2128-2136(2011). https://doi.org/10.1016/j.ijhydene.2010.11.042
  8. Chen, L., Zhu, Q., Hao, Z., Zhang, T. and Xie, Z., "Development of a Co-Ni Bimetallic Aerogel Catalyst for Hydrogen Production Via Methane Oxidative $CO_{2}$ Reforming in a Magnetic Assisted Fluidized Bed," Int. J. Hydrogen Energy., 35(16) 8494- 8502(2010). https://doi.org/10.1016/j.ijhydene.2010.06.003
  9. Nagarajaa, B. M., Bulusheva, D. A., Beloshapkinb, S. and Ross, J. R. H., "The Effect of Potassium on the Activity and Stability of Ni-MgO-$ZrO_{2}$ Catalysts for the Dry Reforming of Methane to Give Synthesis Gas," Catal. Today, 178(1) 132-136(2011). https://doi.org/10.1016/j.cattod.2011.08.040
  10. Guo, Y., Zhou, L. and Kameyama, H., "Steam Reforming Reactions over a Metal-monolithic Anodic Alumina-supported Ni Catalyst with Trace Amounts of Noble Metal," Int. J. Hydrogen Energy., 36(9) 5321-5333(2011). https://doi.org/10.1016/j.ijhydene.2011.02.069
  11. Guo, Y., Zhou, L. and Kameyama, H., "Thermal and Hydrothermal Stability of a Metal Monolithic Anodic Alumina Support for Steam Reforming of Methan," Chem. Eng. J, 168(1) 341-350(2011). https://doi.org/10.1016/j.cej.2011.01.036
  12. Wu, P., Li, X., Ji, S., Lang, B., Habimana, F. and Li, C., "Steam Reforming of Methane to Hydrogen over Ni-based Metal Monolith Catalysts," Catal. Today, 146(1-2) 82-86(2009). https://doi.org/10.1016/j.cattod.2009.01.031
  13. Ryu, J. H., Lee, K. Y., La, H., Kim, H. J., Yang, J. I. and Jung, H., "Ni Catalyst Wash-coated on Metal Monolith with Enhanced Heat-transfer Capability for Steam Reforming," J. Power Sources, 171(2) 499-505(2007). https://doi.org/10.1016/j.jpowsour.2007.05.107
  14. Roh, H. S., Lee, D. K., Koo, K. Y., Jung, U. H. and Yoon, W. L., "Natural Gas Steam Reforming for Hydrogen Production over Metal Monolith Catalyst with Efficient Heat-transfer," Int. J. Hydrogen Energy., 35(4) 1613-1619(2010). https://doi.org/10.1016/j.ijhydene.2009.12.051
  15. Chena, W. H., Linb, M. R., Luc, J. J., Chaod, Y. and Leub, T. S., "Thermodynamic Analysis of Hydrogen Production from Methane Via Autothermal Reforming and Partial Oxidation Followed by Water Gas Shift Reaction," Int. J. Hydrogen Energy., 35(21) 11787-11797(2010). https://doi.org/10.1016/j.ijhydene.2010.08.126
  16. Ayabeb, S., Omotoa, H., Utakaa, T., Kikuchia, R., Sasakib, K., Teraokab, Y. and Eguchia, K., "Catalytic Autothermal Reforming of Methane and Propane over Supported Metal Catalysts," Appl. Catal., A, 241(1-2) 261-269(2003). https://doi.org/10.1016/S0926-860X(02)00471-4
  17. Takeguchi, T., Furukawa, S. N., Inoue, M. and Eguchi, K., "Autothermal Reforming of Methane over Ni Catalysts Supported over $CaO-CeO_{2}-ZrO_{2}$ Solid Solution," Appl. Catal., A, 240(1-2) 223-233(2003). https://doi.org/10.1016/S0926-860X(02)00449-0

Cited by

  1. Temperature oscillations in methanol partial oxidation reactor for the production of hydrogen vol.30, pp.4, 2013, https://doi.org/10.1007/s11814-012-0210-1
  2. Metallic Monolith Catalysts vol.51, pp.3, 2013, https://doi.org/10.9713/kcer.2013.51.3.319
  3. 석탄을 사용한 CO가스 제조를 위한 CO2 전환기술 vol.32, pp.4, 2015, https://doi.org/10.12925/jkocs.2015.32.4.712
  4. CO 합성을 위한 저급석탄-CO2 촉매 가스화 반응 vol.33, pp.3, 2012, https://doi.org/10.12925/jkocs.2016.33.3.466