• Title/Summary/Keyword: 가능적 무한

Search Result 232, Processing Time 0.031 seconds

Leibniz's concept of infinite and infinitely small and arithmetic of infinite (라이프니츠의 무한과 무한소의 개념과 무한의 연산)

  • Lee, Jin-Ho
    • Journal for History of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.67-78
    • /
    • 2005
  • In this paper we deals with Leibniz's definition of infinite and infinitely small quantities, infinite quantities and theory of quantified indivisibles in comparison with Galileo's concept of indivisibles. Leibniz developed 'method of indivisible' in order to introduce the integrability of continuous functions. also we deals with this demonstration, with Leibniz's rules of arithmetic of infinitely small and infinite quantities.

  • PDF

피동형 격납건물 냉각계통 내 돔 효과의 수치적 해석에 관한 연구

  • 전지한;박홍준;이은철
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.298-303
    • /
    • 1997
  • 실제의 격납건물의 구조는 하부 원통형의 구조를 가지는 영역과 상부 돔 형태와 굴뚝 형태의 구조를 가지는 영역으로 나눌 수 있다. 하부 원통형의 구조만을 고려한다면, 고온의 철제 벽면과 콘크리트 벽면 사이의 gap 크기에 비해서 원통의 반지름이 상대적으로 매우 큰 값을 가지기 때문에 2차원 무한평판으로 가정하는 것이 가능하다. 그러나 돔 및 굴뚝 영역에서는 높이가 높아질수록 돔 단면직경이 감소하고 굴뚝 영역도 유동단면적이 작은 원통의 구조를 가져 2차원 무한평판의 가정에 많은 무리가 따른다. 앞에서 명시한 세 가지의 격납건물 형태에 있어서 ASPWR의 경우는 굴뚝을 포함한 영역까지도 무한평판으로 가정하는 것이 가능하나(돔에서의 열전달 단면적이 하부의 열전달 단면적에 비해 매우 작다는 가정을 한다면) 나머지 AP600과 HWRF의 격납건물에 있어서는 상부까지도 무한평판 가정을 사용하는 것에는 무리가 있다. 본 연구에서는 일반적인 유체해석 코드인 FLUENT V4.3을 이용하여 실제 격납건물 구조에 대한 분석을 시도하여 무한평판 구조에 대한 가정이 과도한 열전달량을 예측하고 있음을 확인하였다.

  • PDF

Aristotle's conception of kinesis (아리스토텔레스의 변화 개념)

  • Jeon, Jae-won
    • Journal of Korean Philosophical Society
    • /
    • v.129
    • /
    • pp.291-313
    • /
    • 2014
  • The aim of this paper is to clarify the Aristotle's conception of change(kinesis). Aristotle defines the change as a process which actualize a potentiality. From Aristotle's definition of the change, a number of consequences flow directly about how to conceptualize it. First, the change is fundamentally directional. Second, if we do not know what the change is directed toward, we do not understand what the change is. Third, everything that changes is caused to change by a distinct cause of change, a changer. Fourth, there is a single actualization of cause and subject of the change. All change, for Aristotle, is the change of an enduring subject. And all change occur in the infinite(to apeiron) which is time, space, matter. It would be absurd to equate the whole and the infinite, for that would be to say that the unlimited had a limit. The infinite does not contain, but in so far as it is infinite, is contained. And due at least in part to its potentiality, the infinite is unknowable. Because it lacks a form. The infinite traditionally derived its dignity from being thought of as a whole in which everything is contained. But Aristotle removes the infinite from its position of majesty. Aristotle's this idea was a revolution in philosophical perspective.

Coupled Distinct Element and Boundary Element Analysis of Problems Having Infinite or Semi-infinite Boundaries (개별요소와 경계요소 조합에 의한 무한 및 반무한 영역문제의 해석)

  • Huh, Taik Nyung;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.81-93
    • /
    • 1992
  • Numerical modeling of problems having infinite and semi-infinite boundaries is studied using a coupled method of distinct elements and boundary elements. The regions which are restricted on stress concentration area of loading points, excavation surface, and geometric discontinuity in the underground structures, are modeled using distinct elements, while the infinite and semi-infinite regions are modeled using linear boundary elements. Linear boundary elements for infinite and semi-infinite region are respectively composed using the Kelvin's and the Melan's solution, respectively. For the completeness, the boundary element method, the distinct element, and the coupled method of distinct elements and boundary elements are studied independently. The coupled method is verified and is applied to underground structures of infinite and semi-infinite regions. Through the comparison of the results, it is concluded that the coupled analysis may be used for discontinuous underground structures in the effective manner.

  • PDF

무한상상 - 가상현실 사이버섹스 자판기가 나온다면?

  • Sim, Gwang
    • Vending industry
    • /
    • v.10 no.2 s.31
    • /
    • pp.78-79
    • /
    • 2011
  • 원래 상상은 무한대이다. 현실가능한지 여부를 따지지 않는다면 말이다. 세상을 바꾸고 혁신을 가져온 사람들 중에는 엉뚱하고 기발한 상상을 잘하는 사람, 즉 몽상가 스타일이 많다. 세기의 천재라 일컫는 미켈란젤로, 발명왕 토머스 에디슨, 상대성 이론을 발견한 아인슈타인 등등. 또 얼마전 세상을 떠난 애플의 스티브잡스도 해당이 된다. 그가 최초로 만든 스마트폰도 불과 10년여 전만해도 한낱 몽상에 불과했다. 무한상상은 이런 점에서 가치가 크다. 세상을 뒤바꿀 지극히 창의적이고 생산적인 활동이다. 필자가 이런 이야기를 하는 이유는 지금부터 펼쳐질 황당한 글을 합리화하기 위해서다. 가상현실 사이버섹스자판기라니? 밥 먹고 쓸데없는 상상을 한다고? 어쨌든 상관없다. 난 필 (feel)이 꽂혔으니까. 막지마라. 나는 상상한다. 고로존재하니까.

  • PDF

닭의 개량과 번식(완)

  • 정선부
    • KOREAN POULTRY JOURNAL
    • /
    • s.159
    • /
    • pp.144-149
    • /
    • 1983
  • 닭의 개량이 선진국에서만 가능한 것이 아니고 우리도 자금을 투입해 체계적인 육종사업을 실시한다면 발전의 무한한 가능성을 지니고 있다.

  • PDF

Slope Stability Analysis (사면의 파괴형태 및 그 안정해석에 관한 연구)

  • Lim, Jong Seok;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.11-18
    • /
    • 1984
  • There are two different methods in the stability analysis of slopes depending upon the 1ocations and the types of assumed failure planes, which are the infinite slope analysis and the finite slope analysis. The infinite slope analysis is simple and easier in its application. However, since the method neglects the end effects and assumes the failure plane to be located at the shallow depth and parallel to the slope, the slopes to be analyzed by the method should be limited to a certain range. Thus, it is intended in this paper to define the infinite slopes whose stability may be analyzed by the infinite slope analysis. As a result, it is obtained that the method of infinite slope analysis may be applied to the slopes which have the ratio of the slope height to the depth of the failure plane of 9 or bigger.

  • PDF

Assessment of Landslide Susceptibility using a Coupled Infinite Slope Model and Hydrologic Model in Jinbu Area, Gangwon-Do (무한사면모델과 수리학적 모델의 결합을 통한 강원도 진부지역의 산사태 취약성 분석)

  • Lee, Jung Hyun;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.697-707
    • /
    • 2012
  • The quantitative landslide susceptibility assessment methods can be divided into statistical approaches and geomechanical approaches based on the consideration of the triggering factors and landslide models. The geomechanical approach is considered as one of the most effective approaches since this approach proposes physical slope model and considers geomorphological and geomechanical properties of slope materials. Therefore, the geomechanical approaches has been used widely in landslide susceptibility analysis using the infinite slope model as physical slope model. However, the previous studies assumed constant groundwater level for broad study area without the consideration of rainfall intensity and hydraulic properties of soil materials. Therefore, in this study, landslide susceptibility assessment was implemented using the coupled infinite slope model with hydrologic model. For the analysis, geomechanical and hydrualic properties of slope materials and rainfall intensity were measured from the soil samples which were obtained from field investigation. For the practical application, the proposed approach was applied to Jinbu area, Gangwon-Do which was experienced large amount of landslides in July 2006. In order to compare to the proposed approach, the previous approach was used to analyze the landslide susceptibility using randomly selected groundwater level. Comparison of the results shows that the accuracy of the proposed method was improved with the consideration of the hydrologic model.

Understanding Turing and Kierkegaard through a Mathematical Model (튜링과 키에르케고어: 수학적 모델을 통한 이해)

  • Park, Chang Kyun
    • Journal for History of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.139-152
    • /
    • 2014
  • This paper aims to compare and contrast Kierkegaard and Turing, whose birth dates were one hundred years apart, analyzing them from the perspective of the limit. The model of analysis is two concentric circles and movement in them and on the boundary of outer circle. In the model, Kierkegaard's existential stages have 1:1 correspondences: aesthetic stage, ethical stage, religious stage A and religious stage B correspond to inside of the inner circle, outside of the inner circle, the boundary of the outer circle and the outside of the outer circle, respectively. This paper claims that Turing belongs to inside of the outer circle and moves to the center while Kierkegaard belongs to outside of the outer circle and moves to the infinity. Both of them have movement of potential infinity but their directions are opposite.

Free Field Response Analysis Using Dynamic Fundamental Solution (다층반무한 기본해를 이용한 자유장응답해석)

  • 김문겸;임윤묵;김민규;이종우
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.83-91
    • /
    • 2001
  • 본 연구에서는 2차원 평면상에서 자유장응답 해석을 위하여 유한요소-경계요소 조합에 의한 수치해석기법을 개발하였다. 전체 계를 외부영역과 내부영역으로 구분하였다. 외부영역은 동적 다층반무한 기본해를 이용한 경계요소로 모형화되고 내부영역은 유한요소로 모형화하여 조합하였다. 다층지반의 외부에서 입사하는 지진에 의한 지진응답해석을 수행하기 위하여 동적기본해를 이용한 자유장응답해석을 수행하였다. 지진응답해석에서는 지반의 전단병형률에 따라 변화하는 비선형특성을 모형화하기 위해 등가선형화기법을 적용하였다. 지진응답해석의 검증에 의하여 해석결과를 상용프로그램의 결과와 비교하였다. 결과적으로 지진응답해석을 효과적으로 수행할 수 있는 수치해석기법을 개발하였고 구조물이 있는 경우로의 확장돠 가능하게 되었다.

  • PDF