• Title/Summary/Keyword: 가공형상도

Search Result 1,410, Processing Time 0.034 seconds

Noodle- Making Properties of Domestic Wheats Cultivars (국내산 밀의 제면 적성에 관한 연구)

  • 남재경;한영숙;현영희;오지영
    • Korean journal of food and cookery science
    • /
    • v.16 no.6
    • /
    • pp.593-601
    • /
    • 2000
  • Seven domestic wheat cultivars, Suwon 261, Suwon 265, Eunpa, Kobun, Alchan, Olgru, and Kumgang, and a standard wheat, ASW(Australian Standard White Wheat), were compared in noodle-making properties. The ash contents of domestic wheats and flours were 0.1-0.3% higher than that of ASW. Therefore, domestic wheats required the control of ash contents during milling process. The protein contents which suggest the flour gluten content were 10.32, 11.3, and 9.57% in Suwon 261, Suwon 265, and Kumgang cultivars, respectively. Valorimeter values of Eunpa, Olgru, and Kumgang which indicate the dough formation time and stability were similar to that of ASW. Resistance rate of domestic wheats was lower than that of ASW. Maximum viscosity in Amylograph for Eunpa, Olgru, and Kumgang were in the range of 500-800BU, which were suitable for making noodles. Increase in weight and volume of Olgru noodle was negatively correlated with protein content. Turbidity was not positively correlated with weight and volume increase, but domestic cultivars except Suwon 265 and Eunpa showed a similar turbidity with ASW. The mechanical properties of wet and dry noodles were evaluated by TPA test before and after cooking. Springiness and cohesiveness of wet noodles increased by cooking, and the domestic cultivars showed higher values than ASW. Springiness and cohesiveness of dry noodle were not increased by cooking in any cultivars. Gumminess, chewiness and hardness of domestic wheat cultivars showed higher values than that of ASW. In the tensile test, wet noodles showed no difference between domestic cultivars and ASW. But dry noodles of domestic wheat cultivars showed higher values than ASW. In the color test for lightness, redness and yellowness, there were no differences between flour and dough of domestic wheat cultivars and ASW. In the sensory evaluation, Kumgang wheat cultivar was the most preferred among the wet and dry noodles of other domestic wheat cultivars and ASW. These results suggested Kumgang wheat cultivar to be a practical wheat variety for noodle-making.

  • PDF

DC Electric Field Characteristics considering Thermal Effect for HVDC Slip-on Type Outdoor Termination (HVDC 슬립 온형 기중 종단접속함에 대한 열 영향 반영 DC 전계 특성 평가)

  • Kwon, Ik-Soo;Hwang, Jae-Sang;Koo, Jae-Hong;Sakamoto, Kuniaki;Lee, Bang-Wook
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • A outdoor termination installed at the outdoor substation is required to connect undergroud cables and overhead transmission lines. The joint box for AC transmission system is already developed and widely used to interconnect overhead and undergroud systems. But the development of the joint box for DC transmission system was only introduced from China and Japan, but theire developemnt staus and core technologies were not fully reported. In order to implement HVDC systems connecting ovehead transmission lines and undergroud cables, a outdoor termination should be developed, but the detailed specifications and information of this device were not reported. It is estimated that the development of the joint box for DC environment has some technical obstacles including insulating materials, electric field mitigation, thermal temperature rise, and space charge accumuations. Among this, the most important one is the DC elctrical insualtion design. Therefore, in order to investigate the DC elctrical insualton design of outdoor termination, the design of AC slip-on type outdoor termination is reffered, and DC electric field analysis performed to verify the possiblity of application of AC joint box into DC joint box. Especially for DC electric field analysis, temperature rise of insualting materials of a joint box was considered, because the conductivity of materials could be changed due to temperature rise. Furthermore, DC electric field analysis considering transinet state, and polarity reversal state were also investigated to verify which state is the most severe condition for the DC joint box. From the simualtion resulsts, it was shown that the value and the position of maximum electric field was obtained comparing AC state, DC state without temperaure rise, and DC state with temperaure rise. And it was confimred that severe DC electric field was observed considing temperaure rise. Finally, in order to reduce DC eletric field intensifation, different configuration of the joint box was applied and it was not possible to obtain satisfactory results. It means that the slight change of configuration of AC joint box was not the suitable soluton for DC joint box. It is essential to establish novel DC insulaton design skills and method for DC joint box to commercialze this product in the near future.

Research on Odd-Shaped Stones at Baekje's Palace Backyard in Wanggung-ri, Iksan (익산 왕궁리 백제궁원에서 출토된 괴석에 관한 연구)

  • Rho, Jae-Hyun;Shin, Sang-Sup;Park, Yool-Jin;Kim, Hwa-Ok
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.28 no.4
    • /
    • pp.1-13
    • /
    • 2010
  • This research was conducted to understand the characteristics and traits of Baekje's palace backyard by studying and analyzing the usage, shape, size, material, and place of origin of the odd-shaped stones found at the remains of Baekje's palace in Waggung-ri, Iksan. The results of the research are as following. The odd-shaped stones found at the Baekje palace backyard were used for two purposes. Some of the stones were used as heaping stones(疊石) for the stone waterfall in the backyard while others were used as ornamental stones(置石) to exhibit the uniqueness and beauty of the stone themselves. The stones used for the waterfall had various shapes and materials and were arranged to symbolize the beauty of natural scenery. On the other hand, the ornamental stones were used to exhibit their beauty of forms. Among the twenty six ornamental stones, four were large, four were mid-sized, and eighteen were small. The twenty four heaping stones used for the waterfall were all categorized as small. All of the stones were not too big, easily coming into sight of human beings. The heaping stones were mostly limestones, and some of them were metamorphic rocks such as marble, quartz, green rock, slaty rock, and phyllite. Almost all of the odd-shaped stones used for Baekje's palace backyard have beautiful patterns and specific forms that resemble natural scenes or animals such as a turtle, terrapin, pig, bear, or elephant. Some of the ornamental stones apparently went through carving to emphasize the unique shapes. Considering the usage and characteristic of the odd-shaped stones, one of the most characteristic feature of the Wanggung-ri palace backyard can be said to be 'the garden of odd-shaped stones'. Meanwhile, according to references, interviews, questionings, and on-the-spot surveys on the people who quarried the stones, the stones found at the remains of the Wanggung-ri palace came mostly from Mt. Cheonho in Hosan-ri, Yeosan-myeon, Iksna, and Mt. Shidae in Dosoon-ri, Wanggung-myeon.

Application of Ultrasonic Nano Crystal Surface Modification into Nitinol Stent Wire to Improve Mechanical Characteristics (나이티놀 스텐트 와이어의 기계적 특성 향상을 위한 초음파 나노표면 개질 처리에 대한 연구)

  • Kim, Sang-Ho;Suh, Tae-Suk;Lee, Chang-Soon;Park, In-Gyu;Cho, In-Sik;Pyoun, Young-Shik;Kim, Seong-Hyeon
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.80-87
    • /
    • 2009
  • Phase transformation, superelastic characteristics and variation of surface residual stress were studied for Nitinol shape memory alloy through application of UNSM technology, and life extension methods of stent were also studied by using elastic resilience and corrosion resistance. Nitinol wire of ${\phi}1.778$ mm showed similar surface roughness before and after UNSM treatment, but drawing traces and micro defects were all removed by UNSM treatment. It also changed the surface residual stress from tensile to compressive values, and XRD result showed less intensive austenite peak and clear martensite and additional R-phase peaks after UNSM treatment. Fatigue resistance could be greatly improved through removal of surface defects and rearrangement of surface residual stress from tensile to compressive state, and development of surface modification system to improve not only bio-compatability but also resistance to corrosion and wear will make it possible to develop vascular stent which can be used for circulating system diseases which run first cause of death of recent Koreans.

  • PDF

A Fluid Analysis Study on Centrifugal Pump Performance Improvement by Impeller Modification (원심펌프 회전차 Modification시 성능개선에 관한 유동해석 연구)

  • Lee, A-Yeong;Jang, Hyun-Jun;Lee, Jin-Woo;Cho, Won-Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 2020
  • Centrifugal pump is a facility that transfers energy to fluid through centrifugal force, which is usually generated by rotating the impeller at high speed, and is a major process facility used in many LNG production bases such as vaporization seawater pump, industrial water and fire extinguishing pump using seawater. to be. Currently, pumps in LNG plant sites are subject to operating conditions that vary depending on the amount of supply desired by the customer for a long period of time. Pumps in particular occupy a large part of the consumption strategy at the plant site, and if the optimum operation condition is not available, it can incur enormous energy loss in long term plant operation. In order to solve this problem, it is necessary to identify the performance deterioration factor through the flow analysis and the result analysis according to the fluctuations of the pump's operating conditions and to determine the optimal operation efficiency. In order to evaluate operation efficiency through experimental techniques, considerable time and cost are incurred, such as on-site operating conditions and manufacturing of experimental equipment. If the performance of the pump is not suitable for the site, and the performance of the pump needs to be reduced, a method of changing the rotation speed or using a special liquid containing high viscosity or solids is used. Especially, in order to prevent disruptions in the operation of LNG production bases, a technology is required to satisfy the required performance conditions by processing the existing impeller of the pump within a short time. Therefore, in this study, the rotation difference of the pump was applied to the ANSYS CFX program by applying the modified 3D modeling shape. In addition, the results obtained from the flow analysis and the curve fitting toolbox of the MATLAB program were analyzed numerically to verify the outer diameter correction theory.

GF/PC Composite Filament Design & Optimization of 3D Printing Process and Structure for Manufacturing 3D Printed Electric Vehicle Battery Module Cover (전기자동차 배터리 모듈 커버의 3D 프린팅 제작을 위한 GF/PC 복합소재 필라멘트 설계와 3D 프린팅 공정 및 구조 최적화)

  • Yoo, Jeong-Wook;Lee, Jin-Woo;Kim, Seung-Hyun;Kim, Youn-Chul;Suhr, Jong-Hwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • As the electric vehicle market grows, there is an issue of light weight vehicles to increase battery efficiency. Therefore, it is going to replace the battery module cover that protects the battery module of electric vehicles with high strength/high heat-resistant polymer composite material which has lighter weight from existing aluminum materials. It also aims to respond to the early electric vehicle market where technology changes quickly by combining 3D printing technology that is advantageous for small production of multiple varieties without restrictions on complex shapes. Based on the composite material mechanics, the critical length of glass fibers in short glass fiber (GF)/polycarbonate (PC) composite materials manufactured through extruder was derived as 453.87 ㎛, and the side feeding method was adopted to improve the residual fiber length from 365.87 ㎛ and to increase a dispersibility. Thus, the optimal properties of tensile strength 135 MPa and Young's modulus 7.8 MPa were implemented as GF/PC composite materials containing 30 wt% of GF. In addition, the filament extrusion conditions (temperature, extrusion speed) were optimized to meet the commercial filament specification of 1.75 mm thickness and 0.05 mm standard deviation. Through manufactured filaments, 3D printing process conditions (temperature, printing speed) were optimized by multi-optimization that minimize porosity, maximize tensile strength, and printing speed to increase the productivity. Through this procedure, tensile strength and elastic modulus were improved 11%, 56% respectively. Also, by post-processing, tensile strength and Young's modulus were improved 5%, 18% respectively. Lastly, using the FEA (finite element analysis) technique, the structure of the battery module cover was optimized to meet the mechanical shock test criteria of the electric vehicle battery module cover (ISO-12405), and it is satisfied the battery cover mechanical shock test while achieving 37% lighter weight compared to aluminum battery module cover. Based on this research, it is expected that 3D printing technology of polymer composite materials can be used in various fields in the future.

Conceptual Design of the Three Unit Fixed Partial Denture with Glass Fiber Reinforced Hybrid Composites (Glass fiber 강화 복합레진을 사용한 3본 고정성 국소의치의 개념 설계 연구)

  • Na, Kyoung-Hee;Lee, Kyu-Bok;Jo, Kwang-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.3
    • /
    • pp.145-155
    • /
    • 2002
  • The results of the present feasibility study are summarized as follows, 1. The three unit bridge of knitted material and UD fibre reinforcement has both the rigidity and the strength against a vertical occlusal load of 75N. 2. Stress concentration at the junctional area between the bridge and the abutments, i.e. between the pontic and the knitted caps was observed. In the case of the bridge with reinforcement straps, it was partly shown that the concentration problem could be improved by simply increasing the fillet size at the area. Further refining in the surface of the junctional area will be needed to ensure a further improvement in the stress distribution. This will require some trade off in the level of the stress and the available space. A parametric study will help to decide the appropriate size of the fillet. 3. Design refinement is a must to improve the stress distribution and realize the most favourable shape in terms of fabrication. The current straight bar with a constant cross section area can be redesigned to a tapered shape. The curve from the dental arch should also be placed on the pontic design. In accordance with design refinement, the resistance of the bridge frame to other load cases should be evaluated. 4. Although not included in the present feasibility study, it is estimated that bridges of the anterior teeth can be made strong enough with the knitted material without further reinforcement using unidirectional materials. In this regard, a feasibility study on design concepts and stress analysis for 3, 4, 5 unit bridge is suggested. 5. Two types of bridge were analysed in terms of fatigue. The safe life design concept, i.e. fatigue design concept, looks reasonable for the bridge where if cracks should form and propagate there is virtually nothing a dentist to do. The bridge must be designed so that no crack will be initiated during the life span. In the case of crowns, however, if constructed with composite resin with knitted materials, it might be possible to repair them, which in general is impossible for crowns of PFM or of metal. Therefore for composite resin crowns, a damage tolerance design concept can be applied and reasonably higher operational stresses can be allowed. In this case, of course, a periodic inspection program should be established in parallel. 6. Parts of future works in terms of structural viewpoint which need to be addressed are summarized as the following: 1) To develop processing technology to accommodate design concepts; 2) More realistic modelling of the bridge and analysis-geometry and loading condition. Thickness variation in the knitted material, taper in the pontic, design for anterior tooth bridge, the effect of combined loads, etc, will need to be included; 3) To develop appropriate design concepts and design goals for the fibre composite FPD aiming at taking the best advantage of knitted materials, including the damage tolerance design concept; 4) To develop testing method and perform test such as static ultimate load test, fatigue test, repair test, etc, as necessary.

Study on the channel of bipolar plate for PEM fuel cell (고분자 전해질 연료전지용 바이폴라 플레이트의 유로 연구)

  • Ahn Bum Jong;Ko Jae-Churl;Jo Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.2 s.23
    • /
    • pp.15-27
    • /
    • 2004
  • The purpose of this paper is to improve the performance of Polymer electrolyte fuel cell(PEMFC) by studying the channel dimension of bipolar plates using commercial CFD program 'Fluent'. Simulations are done ranging from 0.5 to 3.0mm for different size in order to find the channel size which shoves the highst hydrogen consumption. The results showed that the smaller channel width, land width, channel depth, the higher hydrogen consumption in anode. When channel width is increased, the pressure drop in channel is decreased because total channel length Is decreased, and when land width is increased, the net hydrogen consumption is decreased because hydrogen is diffused under the land width. It is also found that the influence of hydrogen consumption is larger at different channel width than it at different land width. The change of hydrogen consumption with different channel depth isn't as large as it with different channel width, but channel depth has to be small as can as it does because it has influence on the volume of bipolar plates. however the hydrogen utilization among the channel sizes more than 1.0mm which can be machined in reality is the most at channel width 1.0, land width 1.0, channel depth 0.5mm and considered as optimum channel size. The fuel cell combined with 2cm${\times}$2cm diagonal or serpentine type flow field and MEA(Membrane Electrode Assembly) is tested using 100W PEMFC test station to confirm that the channel size studied in simulation. The results showed that diagonal and serpentine flow field have similarly high OCV and current density of diagonal (low field is higher($2-40mA/m^2$) than that of serpentine flow field under 0.6 voltage, but the current density of serpentine type has higher performance($5-10mA/m^2$) than that of diagonal flow field under 0.7-0.8 voltage.

  • PDF

A Study on the Ordering Status of Traditional Landscape Design Service in Cultural Heritage (문화재의 전통조경설계용역 발주실태 연구)

  • Kim, Min-Seon;Kim, Choong-Sik;Lee, Jae-Yong
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.3
    • /
    • pp.33-41
    • /
    • 2021
  • This study identified the scale that traditional landscape design has taken up by analyzing a total of 1037 services for design of cultural heritage that had been ordered by the government agencies from 2018 to 2020, and has drawn characteristics of traditional landscape design focusing on major cases. The results are as follows. First, the number of order cases for traditional landscape design has shown differences annually in the services of design of cultural heritage, but the design amount has been found to have the similar average annually, which confirmed that the same level has been maintained each year. It was found that the number of cases of traditional landscape design requiring responsibilities or participations of landscape engineers for 3 years in the entire design had a high proportion of approximately 26%. Second, the traditional landscape design has required professional knowledge and experiences of landscape engineers that could not be replaced by the business operator for design of cultural heritage consisting of architects. The expertise has been shown differently depending on types of construction. First, the topographical design for the work to build a foundation has required understanding of ground shapes and its elevations and professional knowledge on calculation of the amount of the earth work and the remains maintenance technique etc. The plantation design has required basic knowledge on growth characteristics of trees and the environment for growth and understanding of the vegetation landscape of the past. Meanwhile, the design for traditional pavement and traditional landscape structures and facilities has required the expertise on traditional materials that are different from the modern ones and their processing and construction methods. The understanding of changes to water paths and ecosystem, the principles of fluids, and characteristics of each type of fluid was essential for the design for the ecological landscape work including the maintenance of a water system such as rivers etc. As such, the traditional landscape design has a scale accounting for approximately one fourth of the entire cultural heritage design and requires the expertise differentiated from other fields. This improves the provisions of the current law on limiting the actual design, suggesting the need for the establishment of a traditional landscape design company so that all traditional landscape designs can be carried out by landscape engineers.

An Analytical Study on the Stem-Growth by the Principal Component and Canonical Correlation Analyses (주성분(主成分) 및 정준상관분석(正準相關分析)에 의(依)한 수간성장(樹幹成長) 해석(解析)에 관(關)하여)

  • Lee, Kwang Nam
    • Journal of Korean Society of Forest Science
    • /
    • v.70 no.1
    • /
    • pp.7-16
    • /
    • 1985
  • To grasp canonical correlations, their related backgrounds in various growth factors of stem, the characteristics of stem by synthetical dispersion analysis, principal component analysis and canonical correlation analysis as optimum method were applied to Larix leptolepis. The results are as follows; 1) There were high or low correlation among all factors (height ($x_1$), clear height ($x_2$), form height ($x_3$), breast height diameter (D. B. H.: $x_4$), mid diameter ($x_5$), crown diameter ($x_6$) and stem volume ($x_7$)) except normal form factor ($x_8$). Especially stem volume showed high correlation with the D.B.H., height, mid diameter (cf. table 1). 3) (1) Canonical correlation coefficients and canonical variate between stem volume and composite variate of various height growth factors ($x_1$, $x_2$ and $x_3$) are ${\gamma}_{u1,v1}=0.82980^{**}$, $\{u_1=1.00000x_7\\v_1=1.08323x_1-0.04299x_2-0.07080x_3$. (2) Those of stem volume and composite variate of various diameter growth factors ($x_4$, $x_5$ and $x_6$) are ${\gamma}_{u1,v1}=0.98198^{**}$, $\{{u_1=1.00000x_7\\v_1=0.86433x_4+0.11996x_5+0.02917x_6$. (3) And canonical correlation between stem volume and composite variate of six factors including various heights and diameters are ${\gamma}_{u1,v1}=0.98700^{**}$, $\{^u_1=1.00000x_7\\v1=0.12948x_1+0.00291x_2+0.03076x_3+0.76707x_4+0.09107x_5+0.02576x_6$. All the cases showed the high canonical correlation. Height in the case of (1), D.B.H. in that of (2), and the D.B.H, and height in that of (3) respectively make an absolute contribution to the canonical correlation. Synthetical characteristics of each qualitative growth are largely affected by each factor. Especially in the case of (3) the influence by the D.B.H. is the most significant in the above six factors (cf. table 2). 3) Canonical correlation coefficient and canonical variate between composite variate of various height growth factors and that of the various diameter factors are ${\gamma}_{u1,v1}=0.78556^{**}$, $\{u_1=1.20569x_1-0.04444x_2-0.21696x_3\\v_1=1.09571x_4-0.14076x_5+0.05285x_6$. As shown in the above facts, only height and D.B.H. affected considerably to the canonical correlation. Thus, it was revealed that the synthetical characteristics of height growth was determined by height and those of the growth in thickness by D.B.H., respectively (cf. table 2). 4) Synthetical characteristics (1st-3rd principal component) derived from eight growth factors of stem, on the basis of 85% accumulated proportion aimed, are as follows; Ist principal component ($z_1$): $Z_1=0.40192x_1+0.23693x_2+0.37047x_3+0.41745x_4+0.41629x_5+0.33454x_60.42798x_7+0.04923x_8$, 2nd principal component ($z_2$): $z_2=-0.09306x_1-0.34707x_2+0.08372x_3-0.03239x_4+0.11152x_5+0.00012x_6+0.02407x_7+0.92185x_8$, 3rd principal component ($z_3$): $Z_3=0.19832x_1+0.68210x_2+0.35824x_3-0.22522x_4-0.20876x_5-0.42373x_6-0.15055x_7+0.26562x_8$. The first principal component ($z_1$) as a "size factor" showed the high information absorption power with 63.26% (proportion), and its principal component score is determined by stem volume, D.B.H., mid diameter and height, which have considerably high factor loading. The second principal component ($z_2$) is the "shape factor" which indicates cubic similarity of the stem and its score is formed under the absolute influence of normal form factor. The third principal component ($z_3$) is the "shape factor" which shows the degree of thickness and length of stem. These three principal components have the satisfactory information absorption power with 88.36% of the accumulated percentage. variance (cf. table 3). 5) Thus the principal component and canonical correlation analyses could be applied to the field of forest measurement, judgement of site qualities, management diagnoses for the forest management and the forest products industries, and the other fields which require the assessment of synthetical characteristics.

  • PDF