• 제목/요약/키워드: βAPP

검색결과 28건 처리시간 0.033초

산사육이 Alzheimer's Disease 병태 모델에 미치는 영향 (The Effects of Crataegus pinnatifida BGE. var. major N.E. BR Extract on the Alzheimer's Disease Model)

  • 정인철;이상룡
    • 동의생리병리학회지
    • /
    • 제16권2호
    • /
    • pp.279-288
    • /
    • 2002
  • This research investigates the effect of the Crataegus pinnatifida BGE. var. major N.E. BR(CPVM) on Alzheimer's disease. The CPVM extract suppressed the expression of IL-1 β, IL-6, APP, AChE mRNA in PC-12 cells treated with CT105. The CPVM extract suppressed the AChE activity, and the production of APP significantly in PC-12 cells treated with CT105. The CPVM extract group showed a significant inhibitory effect on the memory deficit for the mice with Alzheimer's disease induced by CT105 in the Morris water maze experiment. The CPVM extract suppressed the over-expression of IL-1 β, TNF- α and ROS in the mice with Alzheimer's disease induced by CT105. This study suggests that CPVM may be effective for the prevention and treatment of Alzheimer's disease.

Distinctive contribution of two additional residues in protein aggregation of Aβ42 and Aβ40 isoforms

  • Dongjoon Im;Tae Su Choi
    • BMB Reports
    • /
    • 제57권6호
    • /
    • pp.263-272
    • /
    • 2024
  • Amyloid-β (Aβ) is one of the amyloidogenic intrinsically disordered proteins (IDPs) that self-assemble to protein aggregates, incurring cell malfunction and cytotoxicity. While Aβ has been known to regulate multiple physiological functions, such as enhancing synaptic functions, aiding in the recovery of the blood-brain barrier/brain injury, and exhibiting tumor suppression/antimicrobial activities, the hydrophobicity of the primary structure promotes pathological aggregations that are closely associated with the onset of Alzheimer's disease (AD). Aβ proteins consist of multiple isoforms with 37-43 amino acid residues that are produced by the cleavage of amyloid-β precursor protein (APP). The hydrolytic products of APP are secreted to the extracellular regions of neuronal cells. Aβ 1-42 (Aβ42) and Aβ 1-40 (Aβ40) are dominant isoforms whose significance in AD pathogenesis has been highlighted in numerous studies to understand the molecular mechanism and develop AD diagnosis and therapeutic strategies. In this review, we focus on the differences between Aβ42 and Aβ40 in the molecular mechanism of amyloid aggregations mediated by the two additional residues (Ile41 and Ala42) of Aβ42. The current comprehension of Aβ42 and Aβ40 in AD progression is outlined, together with the structural features of Aβ42/Aβ40 amyloid fibrils, and the aggregation mechanisms of Aβ42/Aβ40. Furthermore, the impact of the heterogeneous distribution of Aβ isoforms during amyloid aggregations is discussed in the system mimicking the coexistence of Aβ42 and Aβ40 in human cerebrospinal fluid (CSF) and plasma.

실험적 외상성 뇌손상모델에서 외상 후 저체온법의 효과 - TUNEL과 β-APP Immunohistochemical Stain - (Effects of Posttraumatic Hypothermia in an Animal Model of Traumatic Brain Injury(TBI) - Immunohistochemical Stain by TUNEL & β-APP -)

  • 안병길;하영수;현동근;박종운;김준미
    • Journal of Korean Neurosurgical Society
    • /
    • 제29권4호
    • /
    • pp.461-470
    • /
    • 2000
  • Objective : Many investigators have demonstrated the protective effects of hypothermia following traumatic brain injury(TBI) in both animals and humans. It has long been recognized that mild to moderate hypothermia improves neurologic outcomes as well as reduces histologic and biochemical sequelae after TBI. In this study, two immunohistochemical staining using terminal deoxynucleotidyl-transferase-mediated biotin dUTP nick end labeling(TUNEL), staining of apoptosis, and ${\beta}$-amyloid precursor protein(${\beta}$-APP), a marker of axonal injury, were done and the authors evaluated the protective effects of hypothermia on axonal and neuronal injury after TBI in rats. Material and Method : The animals were prepared for the delivery of impact-acceleration brain injury as described by Marmarou and colleagues. TBI is achieved by allowing of a weight drop of 450gm, 1 m height to fall onto a metallic disc fixed on the intact skull of the rats. Fourty Sprague-Dawley rats weighing 400 to 450g were subjected to experimental TBI induced by an impact-acceleration device. Twenty rats were subjected to hypothermia after injury, with their rectal temperatures maintained at $32^{\circ}C$ for 1 hour. After this 1-hour period of hypothermia, rewarming to normothermic levels was accomplished over 30-minute period. Following 12 hours, 24 hours, 1 week and 2 weeks later the animals were killed and semiserial sagittal sections of the brain were reacted for visualization of the apoptosis and ${\beta}$-APP. Results : The density of ${\beta}$-APP marked damaged axons within the corticospinal tract at the pontomedullary junction and apoptotic cells at the contused cerebral cortex were calculated for each animal. In comparison with the untreated controls, a significant reduction in ${\beta}$-APP marked damaged axonal density and apoptotic cells were found in all hypothermic animals(p<0.05). Conclusion : This study shows that the posttraumatic hypothermia result in substantial protection in TBI, at least in terms of the injured axons and neurons.

  • PDF

Interaction Models of Substrate Peptides and β-Secretase Studied by NMR Spectroscopy and Molecular Dynamics Simulation

  • Lee, Jee-Young;Lee, Sung-Ah;Kim, Jin-Kyoung;Chae, Chi-Bom;Kim, Yangmee
    • Molecules and Cells
    • /
    • 제27권6호
    • /
    • pp.651-656
    • /
    • 2009
  • The formation of ${\beta}$-amyloid peptide ($A{\beta}$) is initiated from cleavage of amyloid precursor protein (APP) by a family of protease, ${\alpha}$-, ${\beta}$-, and ${\gamma}$-secretase. Sub W, a substrate peptide, consists of 10 amino acids, which are adjacent to the ${\beta}$-cleavage site of wild-type APP, and Sub M is Swedish mutant with double mutations on the left side of the ${\beta}$-cleavage site of APP. Sub W is a normal product of the metabolism of APP in the secretary pathway. Sub M is known to increase the efficiency of ${\beta}$-secretase activity, resulting in a more specific binding model compared to Sub W. Three-dimensional structures of Sub W and Sub M were studied by CD and NMR spectroscopy in water solution. On the basis of these structures, interaction models of ${\beta}$-secretase and substrate peptides were determined by molecular dynamics simulation. Four hydrogen bonds and one water-mediated interaction were formed in the docking models. In particular, the hydrogen bonding network of Sub M-BACE formed spread over the broad region of the active site of ${\beta}$-secretase (P5-P3'), and the side chain of P2- Asn formed a hydrogen bond specifically with the side chain of Arg235. These are more favorable to the cleavage of Sub M by ${\beta}$-secretase than Sub W. The two substrate peptides showed different tendency to bind to ${\beta}$-secretase and this information may useful for drug development to treat and prevent Alzheimer's disease.

캠벨얼리(Vitis labruscana B.) 잎 에탄올 추출물이 신경세포에서 아밀로이드 전구 단백질의 발현과 아세틸콜린에스테라제 활성에 미치는 영향 (The Effect of Vitis labruscana B. Leaves Ethanol Extract on the Expression of Amyloid Precursor Protein in Neuroblastoma Cells and on the Acetylcholinesterase Activity)

  • 최하연;김주은;마상용;조형권;김대성;임재윤
    • 생약학회지
    • /
    • 제53권2호
    • /
    • pp.102-110
    • /
    • 2022
  • Alzheimer's disease (AD) is the most common form of dementia, and the accumulation of β-amyloid (Aβ) in the brain triggers AD, followed by hyperphosphorylation of tau protein, neurofibrillary tangles, and synapses loss, neuronal cell death, and cognitive decline occur in a chain. In APPswe neuronal cell line, 50 ㎍/ml of Campbell early (Vitis labruscana B.) leaves 50% ethanol extract (VLL) treatment inhibited the secretion of Aβ1-42 by about 63% and the secretion of Aβ1-40 by about 50%. VLL did not target the enzymatic activity of the amyloidogenic pathway and decreased the protein expression of APP. As a result of RT-qPCR (Reverse transcription-quantitative real-time PCR) of the APPswe cell line treated with VLL, it is thought that the protein expression of APP was reduced by inhibiting the transcription process of the APP gene. In addition, VLL inhibited acetylcholinesterase (AChE) enzyme activity in vitro by 27.6% and 54.7%, respectively, at 50 and 100 ㎍/ml concentrations. We found that VLL inhibited the production of Aβ, a dementia-inducing substance, by suppressing the transcription of the APP gene, and that VLL inhibited AChE activity. We suggest that VLL has the potential as a natural drug material that modulates the alleviation of dementia symptoms.

In vitro에서 β-site amyloid precursor protein-cleaving enzyme 활성과 amyloid β protein 생산에 대한 총명탕가미방(聰明湯加味方)의 효과 (Effect of Chongmyung-Tang Prescription Combination on the Production of Amyloid β protein and β-site amyloid precursor protein-cleaving enzyme Activity in vitro)

  • 임정화;정인철;임종순;김승형;이상룡
    • 동의신경정신과학회지
    • /
    • 제21권2호
    • /
    • pp.191-200
    • /
    • 2010
  • Objectives : This experiment was designed to investigate the effect of Chongmyung-Tang Prescription Combination(CmTP-$C_{1-10}$) extract on the production of amyloid $\beta$ protein and $\beta$-site amyloid precursor protein-cleaving enzyme(BACE) activity. Methods : The effect of CmTP-$C_{1-10}$ extract on expression of APP mRNA, BACE2 mRNA in BV2 microglia cell line treated by lipopolysacchride(LPS) and amyloid $\beta$ protein fragment(A$\beta$ fragment) were investigated. The effect of CmTP-$C_{1-10}$ extract on production of amyloid $\beta$ protein(A$\beta$) in BV2 microglia cell line treated by LPS and A$\beta$ fragment were investigated. The effect of CmTP-$C_{1-10}$ extract on BACE activity were investigated. Results : 1. CmTP-$C_9$ extract the most significantly suppressed the expression of APP mRNA, BACE2 mRNA in BV2 microglia cell line treated by LPS and A$\beta$ fragment. 2. CmTP-$C_9$ extract significantly suppressed the production of A$\beta$ in BV2 microglia cell line treated by LPS and A$\beta$ fragment. 3. CmTP-$C_9$ extract the most significantly inhibited BACE activity. Conclusions : These results suggest that CmTP-$C_9$ may be effective for the prevention and treatment of Alzheimer's Disease. Investigation into clinical use of CmTP-$C_9$ for Alzheimer's Disease is suggested for future research.

저령차전자탕(豬苓車前子湯)이 βA와 LPS로 처리된 BV2 microglial cell에 미치는 영향 (The Effects of Jeoreongchajeonja-tang(Zhulingjuqianzi-tang) on the βA and LPS Induced BV2 microglial cell)

  • 류창희;정인철;이상룡
    • 동의신경정신과학회지
    • /
    • 제23권1호
    • /
    • pp.145-159
    • /
    • 2012
  • Objectives : This research investigates the effect of the JCT extract regarding Alzheimer's disease. Methods : The effects of the JCT extract on IL-$1{\beta}$, IL-6, TNF-${\alpha}$, COX-2, NOS-II mRNA, APP mRNA, BACE mRNA, Nitric oxide(NO), and ${\beta}A$ protein production in the BV2 microglia cell lines treated with LPS and ${\beta}A$ were investigated. Results : 1. The JCT extract suppressed the expression of IL-$1{\beta}$, IL-6, TNF-${\alpha}$, COX-2, and NOS-II mRNA in BV2 microglial cell line treated with LPS and ${\beta}A$. 2. The JCT extract suppressed the expression of BACE and APP mRNA in BV2 microglial cell line treated with LPS and ${\beta}A$. 3. The JCT extract suppressed the expression of Nitric oxide(NO) in BV2 microglial cell line treated with LPS and ${\beta}A$. 4. The JCT extract suppressed the expression of ${\beta}A$ protein production in BV2 microglial cell line treated with LPS and ${\beta}A$. Conclusions : These results suggest that the JCT group may be effective for the treatment of Alzheimer's disease. Thus, JCT could be considered among the future therapeutic drugs indicated for the treatment of Alzheimer's disease.

Neuroprotective effects of Paeonia lactiflora and its active compound paeoniflorin against Aβ25-35-induced neurotoxicity in SH-SY5Y cells

  • Nam, Mi Na;Kim, Ji-Hyun;Lee, Ah Young;Cho, Eun Ju
    • Journal of Applied Biological Chemistry
    • /
    • 제64권2호
    • /
    • pp.105-112
    • /
    • 2021
  • Excessive accumulation of the amyloid beta (Aβ) peptide has been implicated in the pathogenesis of Alzheimer's disease (AD). Paeonia lactiflora (PL) has been used in treatments of several conditions such as inflammation, arthritis, and cognitive impairment. The purpose of this study was to investigate the neuroprotective effect and mechanisms of PL and its active compound, paeoniflorin (PF), on Aβ25-35-induced neurotoxicity in SH-SY5Y cells. We evaluated cell viability, lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) production. Furthermore, underlying mechanism of PL and PF on the regulation of amyloidogenic pathway was analyzed by Western blotting. In our results, Aβ25-35-induced neuronal cell loss was observed, whereas treatment with PL (10, 50, and 100 ㎍/mL) and PF (1, 5, and 10 ㎍/mL) significantly elevated the cell viability, and decreased LDH release and ROS production. In addition, exposure of SH-SY5Y cells to Aβ25-35 significantly increased the protein levels of amyloid precursor protein (APP)-C-terminal fragment β, β-site APP-cleaving enzyme, and presenilin-1 and -2. However, treatment with PL and PF inhibited the amyloidogenic pathway via the down-regulation of those protein expressions. Taken together, our results indicate that PL, and its active compound PF, could protect SH-SY5Y cells against Aβ25-35-induced cell neurotoxicity by attenuating LDH release and ROS production, and these effects may be attributed to regulation of amyloidogenic pathway-related protein expression. In conclusion, PL and PF could be a potential to prevent neurodegenerative disorders such as AD.

Spinosin Inhibits Aβ1-42 Production and Aggregation via Activating Nrf2/HO-1 Pathway

  • Zhang, Xiaoying;Wang, Jinyu;Gong, Guowei;Ma, Ruixin;Xu, Fanxing;Yan, Tingxu;Wu, Bo;Jia, Ying
    • Biomolecules & Therapeutics
    • /
    • 제28권3호
    • /
    • pp.259-266
    • /
    • 2020
  • The present research work primarily investigated whether spinosin has the potential of improving the pathogenesis of Alzheimer's disease (AD) driven by β-amyloid (Aβ) overproduction through impacting the procession of amyloid precursor protein (APP). Wild type mouse Neuro-2a cells (N2a/WT) and N2a stably expressing human APP695 (N2a/APP695) cells were treated with spinosin for 24 h. The levels of APP protein and secreted enzymes closely related to APP procession were examined by western blot analysis. Oxidative stress related proteins, such as nuclear factor-erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) were detected by immunofluorescence assay and western blot analysis, respectively. The intracellular reactive oxygen species (ROS) level was analyzed by flow cytometry, the levels of Aβ1-42 were determined by ELISA kit, and Thioflavin T (ThT) assay was used to detect the effect of spinosin on Aβ1-42 aggregation. The results showed that ROS induced the expression of ADAM10 and reduced the expression of BACE1, while spinosin inhibited ROS production by activating Nrf2 and up-regulating the expression of HO-1. Additionally, spinosin reduced Aβ1-42 production by impacting the procession of APP. In addition, spinosin inhibited the aggregation of Aβ1-42. In conclusion, spinosin reduced Aβ1-42 production by activating the Nrf2/HO-1 pathway in N2a/WT and N2a/APP695 cells. Therefore, spinosin is expected to be a promising treatment of AD.

Combination therapy with cilostazol, aripiprazole, and donepezil protects neuronal cells from β-amyloid neurotoxicity through synergistically enhanced SIRT1 expression

  • Heo, Hye Jin;Park, So Youn;Lee, Yi Sle;Shin, Hwa Kyoung;Hong, Ki Whan;Kim, Chi Dae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권4호
    • /
    • pp.299-310
    • /
    • 2020
  • Alzheimer's disease (AD) is a multi-faceted neurodegenerative disease. Thus, current therapeutic strategies require multitarget-drug combinations to treat or prevent the disease. At the present time, single drugs have proven to be inadequate in terms of addressing the multifactorial pathology of AD, and multitarget-directed drug design has not been successful. Based on these points of views, it is judged that combinatorial drug therapies that target several pathogenic factors may offer more attractive therapeutic options. Thus, we explored that the combination therapy with lower doses of cilostazol and aripiprazole with add-on donepezil (CAD) might have potential in the pathogenesis of AD. In the present study, we found the superior efficacies of donepezil add-on with combinatorial mixture of cilostazol plus aripiprazole in modulation of expression of AD-relevant genes: Aβ accumulation, GSK-3β, P300, acetylated tau, phosphorylated-tau levels, and activation of α-secretase/ADAM 10 through SIRT1 activation in the N2a Swe cells expressing human APP Swedish mutation (N2a Swe cells). We also assessed that CAD synergistically raised acetylcholine release and choline acetyltransferase (CHAT) expression that were declined by increased β-amyloid level in the activated N2a Swe cells. Consequently, CAD treatment synergistically increased neurite elongation and improved cell viability through activations of PI3K, BDNF, β-catenin and α7-nicotinic cholinergic receptors in neuronal cells in the presence of Aβ1-42. This work endorses the possibility for efficient treatment of AD by supporting the synergistic therapeutic potential of donepezil add-on therapy in combination with lower doses of cilostazol and aripiprazole.