• 제목/요약/키워드: β-catenin

검색결과 158건 처리시간 0.023초

천궁 에탄올 추출물의 AMPK 활성화를 통한 U937 인체 혈구암세포의 apoptosis 유발 (Induction of Apoptosis by Ethanol Extract of Cnidium officinale in Human Leukemia U937 Cells through Activation of AMPK)

  • 정진우;최영현;박철
    • 생명과학회지
    • /
    • 제25권11호
    • /
    • pp.1255-1264
    • /
    • 2015
  • 천궁(C. officinale)은 예로부터 민간처방 약재로 사용되었으며, 항염증, 항산화, 항암 및 신생혈관억제 등의 효능을 가지는 것으로 알려져 있다. 하지만 혈구암세포에서 apoptosis 유발과 관련된 분자생물학적 기전에 대해서는 명확히 밝혀져 있지 않다. 본 연구에서는 인체 혈구암세포인 U937 세포에서 천궁의 열수, 에탄올 및 메탄올 추출물(WECO, EECO 및 MECO)이 유발하는 항암효과 및 항암기전을 조사하였다. 먼저 WECO, EECO 및 MECO가 유발하는 증식억제 정도를 조사한 결과 EECO가 가장 뛰어난 효능을 가진다는 것을 알 수 있었으며, 이러한 현상이 apoptosis 유발에 의한 것임을 annexin-V 염색, apoptotic body 형성, DNA 단편화 및 MMP 소실 등을 통하여 확인하였다. EECO 처리에 의한 apoptosis 유발에는 DR4의 발현 증가와 함께 cIAP-1, Bcl-2 및 total Bid의 발현감소가 관여하였으며, caspases-3, -8 및 -9의 활성화와 함께 caspases-3의 기질 단백질인 PARP, β-catenin 및 PLC γ1의 단편화도 관찰되었다. 또한 EECO는 AMPK signaling pathway를 활성화시키는 것으로 나타났으며, AMPK 억제제인 compound C를 이용하여 AMPK의 활성을 억제하였을 경우 EECO에 의하여 유발되었던 apoptosis가 현저하게 감소되는 것으로 나타났다. 이상의 결과를 살펴볼 때 인체 혈구암세포인 U937 세포에서 EECO에 의하여 유발되는 apoptosis는 AMPK가 중요한 조절자로서 작용하는 것으로 생각된다.

New conceptual approaches toward dentin regeneration using the drug repositioning strategy with Wnt signaling pathways

  • Lee, Eui-Seon;Kim, Tae-Young;Aryal, Yam Prasad;Kim, Kihyun;Byun, Seongsoo;Song, Dongju;Shin, Yejin;Lee, Dany;Lee, Jooheon;Jung, Gilyoung;Chi, Seunghoon;Choi, Yoolim;Lee, Youngkyun;An, Chang-Hyeon;Kim, Jae-Young
    • International Journal of Oral Biology
    • /
    • 제46권2호
    • /
    • pp.67-73
    • /
    • 2021
  • This study summarizes the recent cutting-edge approaches for dentin regeneration that still do not offer adequate solutions. Tertiary dentin is formed when odontoblasts are directly affected by various stimuli. Recent preclinical studies have reported that stimulation of the Wnt/β-catenin signaling pathway could facilitate the formation of reparative dentin and thereby aid in the structural and functional development of the tertiary dentin. A range of signaling pathways, including the Wnt/β-catenin pathway, is activated when dental tissues are damaged and the pulp is exposed. The application of small molecules for dentin regeneration has been suggested as a drug repositioning approach. This study reviews the role of Wnt signaling in tooth formation, particularly dentin formation and dentin regeneration. In addition, the application of the drug repositioning strategy to facilitate the development of new drugs for dentin regeneration has been discussed in this study.

Phenolic acids in Panax ginseng inhibit melanin production through bidirectional regulation of melanin synthase transcription via different signaling pathways

  • Jianzeng Liu ;Xiaohao Xu ;Jingyuan Zhou;Guang Sun ;Zhenzhuo Li;Lu Zhai ;Jing Wang ;Rui Ma ;Daqing Zhao;Rui Jiang ;Liwei Sun
    • Journal of Ginseng Research
    • /
    • 제47권6호
    • /
    • pp.714-725
    • /
    • 2023
  • Background: Our previous investigation indicated that the preparation of Panax ginseng Meyer (P. ginseng) inhibited melanogenesis. It comprised salicylic acid (SA), protocatechuic acid (PA), p-coumaric acid (p-CA), vanillic acid (VA), and caffeic acid (CA). In this investigation, the regulatory effects of P. ginseng phenolic acid monomers on melanin production were assessed. Methods: In vitro and in vivo impact of phenolic acid monomers were assessed. Results: SA, PA, p-CA and VA inhibited tyrosinase (TYR) to reduce melanin production, whereas CA had the opposite effects. SA, PA, p-CA and VA significantly downregulated the melanocortin 1 receptor (MC1R), cycle AMP (cAMP), protein kinase A (PKA), cycle AMP-response element-binding protein (CREB), microphthalmia-associated transcription factor (MITF) pathway, reducing mRNA and protein levels of TYR, tyrosinase-related protein 1 (TYRP1), and TYRP2. Moreover, CA treatment enhanced the cAMP, PKA, and CREB pathways to promote MITF mRNA level and phosphorylation. It also alleviated MITF protein level in α-MSH-stimulated B16F10 cells, comparable to untreated B16F10, increasing the expression of phosphorylation glycogen synthase kinase 3β (p-GSK3β), β-catenin, p-ERK/ERK, and p-p38/p38. Furthermore, the GSK3β inhibitor promoted p-GSK3β and p-MITF expression, as observed in CA-treated cells. Moreover, p38 and ERK inhibitors inhibited CA-stimulated p-p38/p38, p-ERK/ERK, and p-MITF increase, which had negative binding energies with MC1R, as depicted by molecular docking. Conclusion: P. ginseng roots' phenolic acid monomers can safely inhibit melanin production by bidirectionally regulating melanin synthase transcription. Furthermore, they reduced MITF expression via MC1R/cAMP/PKA signaling pathway and enhanced MITF post-translational modification via Wnt/mitogen-activated protein kinase signaling pathway.

A Bacterial Metabolite, Compound K, Induces Programmed Necrosis in MCF-7 Cells via GSK3β

  • Kwak, Chae Won;Son, Young Min;Gu, Min Jeong;Kim, Girak;Lee, In Kyu;Kye, Yoon Chul;Kim, Han Wool;Song, Ki-Duk;Chu, Hyuk;Park, Byung-Chul;Lee, Hak-Kyo;Yang, Deok-Chun;Sprent, Jonathan;Yun, Cheol-Heui
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1170-1176
    • /
    • 2015
  • Ginsenosides, the major active component of ginseng, are traditionally used to treat various diseases, including cancer, inflammation, and obesity. Among these, compound K (CK), an intestinal bacterial metabolite of the ginsenosides Rb1, Rb2, and Rc from Bacteroides JY-6, is reported to inhibit cancer cell growth by inducing cell-cycle arrest or cell death, including apoptosis and necrosis. However, the precise effect of CK on breast cancer cells remains unclear. MCF-7 cells were treated with CK ($0-70{\mu}M$) for 24 or 48 h. Cell proliferation and death were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. Changes in downstream signaling molecules involved in cell death, including glycogen synthase kinase $3\beta$ ($GSK3\beta$), $GSK3\beta$, $\beta$-catenin, and cyclin D1, were analyzed by western blot assay. To block $GSK3\beta$ signaling, MCF-7 cells were pretreated with $GSK3\beta$ inhibitors 1 h prior to CK treatment. Cell death and the expression of $\beta$-catenin and cyclin D1 were then examined. CK dose- and time-dependently inhibited MCF-7 cell proliferation. Interestingly, CK induced programmed necrosis, but not apoptosis, via the $GSK3\beta$ signaling pathway in MCF-7 cells. CK inhibited $GSK3\beta$ phosphorylation, thereby suppressing the expression of $\beta$-catenin and cyclin D1. Our results suggest that CK induces programmed necrosis in MCF-7 breast cancer cells via the $GSK3\beta$ signaling pathway.

Stem cell maintenance by manipulating signaling pathways: past, current and future

  • Chen, Xi;Ye, Shoudong;Ying, Qi-Long
    • BMB Reports
    • /
    • 제48권12호
    • /
    • pp.668-676
    • /
    • 2015
  • Pluripotent stem cells only exist in a narrow window during early embryonic development, whereas multipotent stem cells are abundant throughout embryonic development and are retainedin various adult tissues and organs. While pluripotent stem cell lines have been established from several species, including mouse, rat, and human, it is still challenging to establish stable multipotent stem cell lines from embryonic or adult tissues. Based on current knowledge, we anticipate that by manipulating extrinsic and intrinsic signaling pathways, most if not all types of stem cells can be maintained in a long-term culture. In this article, we summarize current culture conditions established for the long-term maintenance of authentic pluripotent and multipotent stem cells and the signaling pathways involved. We also discuss the general principles of stem cell maintenance and propose several strategies on the establishment of novel stem cell lines through manipulation of signaling pathways.

Promotion Effects of Ultra-High Molecular Weight Poly-γ-Glutamic Acid on Wound Healing

  • Choi, Jae-Chul;Uyama, Hiroshi;Lee, Chul-Hoon;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권6호
    • /
    • pp.941-945
    • /
    • 2015
  • We examined the in vivo efficacy of ultra-high molecular weight poly-γ-glutamic acid (UHMW γ-PGA) for wound healing. The wound area was measured by a ruler and documented by digital photography before the animals were sacrificed at days 8 and 16 post wounding. The areas of wounds treated with UHMW γ-PGA were significantly decreased on days 8 and 16, as compared with those receiving a control treatment, and more than 70% of the UHMW γ-PGAtreated area was repaired by day 8. Hematoxylin and eosin staining confirmed that the epidermis had regenerated in the UHMW γ-PGA-treated wounds. At 16 days post wounding, collagen pigmentation and cross-linking were increased as compared with the control groups, and greater regeneration of blood vessels had occurred in UHMW γ-PGA-treated groups. Increased levels of transforming growth factor-beta and β-catenin were also observed in skin samples collected from UHMW γ-PGA-treated animals on days 8 and 16 post incision. Taken together, these findings suggest that UHMW γ-PGA promotes wound healing in vivo.

Combination Therapy of Lactobacillus plantarum Supernatant and 5-Fluouracil Increases Chemosensitivity in Colorectal Cancer Cells

  • An, JaeJin;Ha, Eun-Mi
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권8호
    • /
    • pp.1490-1503
    • /
    • 2016
  • Colorectal cancer (CRC) is the third most common cancer in the world. Although 5-fluorouracil (5-FU) is the representative chemotherapy drug for colorectal cancer, it has therapeutic limits due to its chemoresistant characteristics. Colorectal cancer cells can develop into cancer stem cells (CSCs) with self-renewal potential, thereby causing malignant tumors. The human gastrointestinal tract contains a complex gut microbiota that is essential for the host's homeostasis. Recently, many studies have reported correlations between gut flora and the onset, progression, and treatment of CRC. The present study confirms that the most representative symbiotic bacteria in humans, Lactobacillus plantarum (LP) supernatant (SN), selectively inhibit the characteristics of 5-FU-resistant colorectal cancer cells (HT-29 and HCT-116). LP SN inhibited the expression of the specific markers CD44, 133, 166, and ALDH1 of CSCs. The combination therapy of LP SN and 5-FU inhibited the survival of CRCs and led to cell death by inducing caspase-3 activity. The combination therapy of LP SN and 5-FU induced an anticancer mechanism by inactivating the Wnt/β-catenin signaling of chemoresistant CRC cells, and reducing the formation and size of colonospheres. In conclusion, our results show that LP SN can enhance the therapeutic effect of 5-FU for colon cancer, and reduce colorectal cancer stem-like cells by reversing the development of resistance to anticancer drugs. This implies that probiotic substances may be useful therapeutic alternatives as biotherapeutics for chemoresistant CRC.

Dikkopf-1 promotes matrix mineralization of osteoblasts by regulating Ca+-CAMK2A- CREB1 pathway

  • Hyosun, Park;Sungsin, Jo;Mi-Ae, Jang;Sung Hoon, Choi;Tae-Hwan, Kim
    • BMB Reports
    • /
    • 제55권12호
    • /
    • pp.627-632
    • /
    • 2022
  • Dickkopf-1 (DKK1) is a secreted protein that acts as an antagonist of the canonical WNT/β-catenin pathway, which regulates osteoblast differentiation. However, the role of DKK1 on osteoblast differentiation has not yet been fully clarified. Here, we investigate the functional role of DKK1 on osteoblast differentiation. Primary osteoprogenitor cells were isolated from human spinal bone tissues. To examine the role of DKK1 in osteoblast differentiation, we manipulated the expression of DKK1, and the cells were differentiated into mature osteoblasts. DKK1 overexpression in osteoprogenitor cells promoted matrix mineralization of osteoblast differentiation but did not promote matrix maturation. DKK1 increased Ca+ influx and activation of the Ca+/calmodulin-dependent protein kinase II Alpha (CAMK2A)-cAMP response element-binding protein 1 (CREB1) and increased translocation of p-CREB1 into the nucleus. In contrast, stable DKK1 knockdown in human osteosarcoma cell line SaOS2 exhibited reduced nuclear translocation of p-CREB1 and matrix mineralization. Overall, we suggest that manipulating DKK1 regulates the matrix mineralization of osteoblasts by Ca+-CAMK2A-CREB1, and DKK1 is a crucial gene for bone mineralization of osteoblasts.

MC3T3-E1 골아세포에서 발효 다시마 추출물에 의한 조골세포 분화의 촉진 (Fermented sea tangle (Laminaria japonica Aresch) Accelerates Osteoblast Differentiation in murine osteoblastic MC3T3-E1 Cells)

  • 정나라;최영현
    • 한국해양바이오학회지
    • /
    • 제15권1호
    • /
    • pp.24-32
    • /
    • 2023
  • The Laminaria japonica Aresch (Sea tangle) belongs to the brown algae and has a long history as a food material in Asia, including Korea. Recent studies have found that the fermented Sea tangle extract (FST) inhibited the differentiation of osteoclasts and protected osteoblasts from oxidative damage. This study aims to explore the possibility that FST can induce the differentiation of osteoblasts and identify the responsible mechanism. According to our results, FST induced differentiation into osteogenic cells in the presence of osteoblastic MC3T3-E1 cells under non-toxic conditions.. This finding was confirmed by phalloidin staining, increased alkaline phosphatase activity, and calcium deposition. Additionally, it was found that this process was achieved by increasing the expression of key factors involved in osteoblast differentiation, such as runt-related transcription factor-2, osterix, β-catenin, and bone morphogenetic protein-2. Moreover, FST increased autophagy, which may contribute to the maintenance of the bone formation homeostasis, and is associated with the activation of the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase signaling pathways. Although further research about the bioactive substances contained in FST and the tests of their efficacy are required, the results of this study indicate that FST has incredible applicability as a functional material for maintaining the bone homeostasis.

Immune-Enhancing Effect and Anti-Obesity Activit of Kadsura japonica Fruits

  • Jin Hee Woo;Na Rae Shin;Ju-Hyeong Yu;So Jeong Park;Jin Boo Jeong
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2022년도 추계학술대회
    • /
    • pp.87-87
    • /
    • 2022
  • Under the COVID-19 pandemic, interest in immune enhancement and anti-obesity is increasing. Thus, in this study, we investigated whether Kadsura japonica fruits (KJF) exhibits immunostimulatory activity and anti-obesity activity. KJF increased the production of immunostimulatory factors and phagocytosis in RAW264.7 cells. Inhibition of TLR2 and TLR4 blocked KJF-mediated production of immunostimulatory factors in RAW264.7 cells. In addition, the inhibition of MAPK and PI3K/AKT signaling pathway reduced KJF-mediated production of immunostimulatory factors, and the activation of MAPK and PI3K/AKT signaling pathway by KJF suppressed the inhibition of TLR2/4. KJF attenuated the lipid accumulation and the protein expression such as CEBPα, PPARγ, perilipin-1, adiponectin, and FABP4 related to the lipid accumulation in 3T3-L1 cells. In addition, KJF inhibited excessive proliferation of 3T3-L1 cells and protein expressions such as β-catenin and cyclin D1 related to cell growth. These findings indicate that KJF may have immunostimulatory activity and anti-obesity activity.

  • PDF