DOI QR코드

DOI QR Code

Phenolic acids in Panax ginseng inhibit melanin production through bidirectional regulation of melanin synthase transcription via different signaling pathways

  • Jianzeng Liu (Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine) ;
  • Xiaohao Xu (Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine) ;
  • Jingyuan Zhou (Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine) ;
  • Guang Sun (Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine) ;
  • Zhenzhuo Li (Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine) ;
  • Lu Zhai (Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine) ;
  • Jing Wang (Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine) ;
  • Rui Ma (Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine) ;
  • Daqing Zhao (Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine) ;
  • Rui Jiang (Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine) ;
  • Liwei Sun (Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine)
  • Received : 2022.11.15
  • Accepted : 2023.05.19
  • Published : 2023.11.01

Abstract

Background: Our previous investigation indicated that the preparation of Panax ginseng Meyer (P. ginseng) inhibited melanogenesis. It comprised salicylic acid (SA), protocatechuic acid (PA), p-coumaric acid (p-CA), vanillic acid (VA), and caffeic acid (CA). In this investigation, the regulatory effects of P. ginseng phenolic acid monomers on melanin production were assessed. Methods: In vitro and in vivo impact of phenolic acid monomers were assessed. Results: SA, PA, p-CA and VA inhibited tyrosinase (TYR) to reduce melanin production, whereas CA had the opposite effects. SA, PA, p-CA and VA significantly downregulated the melanocortin 1 receptor (MC1R), cycle AMP (cAMP), protein kinase A (PKA), cycle AMP-response element-binding protein (CREB), microphthalmia-associated transcription factor (MITF) pathway, reducing mRNA and protein levels of TYR, tyrosinase-related protein 1 (TYRP1), and TYRP2. Moreover, CA treatment enhanced the cAMP, PKA, and CREB pathways to promote MITF mRNA level and phosphorylation. It also alleviated MITF protein level in α-MSH-stimulated B16F10 cells, comparable to untreated B16F10, increasing the expression of phosphorylation glycogen synthase kinase 3β (p-GSK3β), β-catenin, p-ERK/ERK, and p-p38/p38. Furthermore, the GSK3β inhibitor promoted p-GSK3β and p-MITF expression, as observed in CA-treated cells. Moreover, p38 and ERK inhibitors inhibited CA-stimulated p-p38/p38, p-ERK/ERK, and p-MITF increase, which had negative binding energies with MC1R, as depicted by molecular docking. Conclusion: P. ginseng roots' phenolic acid monomers can safely inhibit melanin production by bidirectionally regulating melanin synthase transcription. Furthermore, they reduced MITF expression via MC1R/cAMP/PKA signaling pathway and enhanced MITF post-translational modification via Wnt/mitogen-activated protein kinase signaling pathway.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China [grant numbers U19A2013 and U20A20402] and the Science and Technology Development Plan of Jilin Province [grant numbers 20210304002YY].

References

  1. Rachmin I, Ostrowski SM, Weng QY, Fisher DE. Topical treatment strategies to manipulate human skin pigmentation. Adv Drug Deliv Rev 2020;153:65-71.  https://doi.org/10.1016/j.addr.2020.02.002
  2. Lavinda O, Manga P, Orlow SJ, Cardozo T. Biophysical compatibility of a heterotrimeric tyrosinase-TYRP1-TYRP2 metalloenzyme complex. Front Pharmacol 2021;12:602206. 
  3. Lim J, Nam S, Jeong JH, Kim MJ, Yang Y, Lee MS, Lee HG, Ryu JH, Lim JS. Kazinol U inhibits melanogenesis through the inhibition of tyrosinase-related proteins via AMP kinase activation. Br J Pharmacol 2019;176:737-50.  https://doi.org/10.1111/bph.14560
  4. Sevilla A, Cheret J, Slominski RM, Slominski AT, Paus R. Revisiting the role of melatonin in human melanocyte physiology: a skin context perspective. J Pineal Res 2022;72:e12790. 
  5. Weiss TJ, Crawford ER, Posada V, Rahman H, Liu T, Murphy BM, Arnold TE, Gray S, Hu Z, Hennessey RC, et al. Cell-intrinsic melanin fails to protect melanocytes from ultraviolet-mutagenesis in the absence of epidermal melanin. Pigment Cell Melanoma Res 2023;36:6-18.  https://doi.org/10.1111/pcmr.13070
  6. Solano F. Photoprotection and skin pigmentation: melanin-related molecules and some other new agents obtained from natural sources. Molecules 2020;25. 
  7. Newman DJ. Natural products and drug discovery. Natl Sci Rev 2022;9: nwac206. 
  8. Varghese R, Dalvi YB. Natural products as anticancer agents. Curr Drug Targets 2021;22:1272-87.  https://doi.org/10.2174/1389450121999201230204526
  9. Kim MR. Antioxidants of natural products. Antioxidants (Basel) 2021:10. 
  10. Gonzalez-Manzano S, Duenas M. Applications of natural products in Food. Foods 2021:10. 
  11. Ekiert HM, Szopa A. Biological activities of natural products. Molecules 2020;25. 
  12. Merecz-Sadowska A, Sitarek P, Kowalczyk T, Zajdel K, Kucharska E, Zajdel R. The modulation of melanogenesis in B16 cells upon treatment with plant extracts and isolated plant compounds. Molecules 2022;27. 
  13. Hassan M, Shahzadi S, Kloczkowski A. Tyrosinase inhibitors naturally present in plants and synthetic modifications of these natural products as anti-melanogenic agents: a review. Molecules 2023;28. 
  14. Yang S, Zeng H, Jiang L, Fu C, Gao L, Zhang L, Zhang Y, Zhang X, Zhu L, Zhang F, et al. Melatonin reduces melanogenesis by inhibiting the paracrine effects of keratinocytes. Exp Dermatol 2023;32:511-20.  https://doi.org/10.1111/exd.14743
  15. Yu BY, Ngo HH, Choi WJ, Keum YS. Dimethyl itaconate inhibits melanogenesis in B16F10 cells. Antioxidants (Basel) 2023;12. 
  16. Kim DH, Shin DW, Lim BO. Fermented aronia melanocarpa inhibits melanogenesis through dual mechanisms of the PI3K/AKT/GSK-3beta and PKA/CREB pathways. Molecules 2023;28. 
  17. Nordin FNM, Aziz A, Zakaria Z, Wan Mohamed Radzi CWJ. A systematic review on the skin whitening products and their ingredients for safety, health risk, and the halal status. J Cosmet Dermatol 2021;20:1050-60.  https://doi.org/10.1111/jocd.13691
  18. Espinosa-Leal CA, Garcia-Lara S. Current methods for the discovery of new active ingredients from natural products for cosmeceutical applications. Planta Med 2019;85:535-51.  https://doi.org/10.1055/a-0857-6633
  19. Berggren E. Current trends in safety assessment of cosmetics ingredients. Regul Toxicol Pharmacol 2022;134:105228. 
  20. Li T, Zhang L, Jin C, Xiong Y, Cheng YY, Chen K. Pomegranate flower extract bidirectionally regulates the proliferation, differentiation and apoptosis of 3T3-L1 cells through regulation of PPARgamma expression mediated by PI3K-AKT signaling pathway. Biomed Pharmacother 2020;131:110769. 
  21. Liang Y, Xu Y, Zhu Y, Ye H, Wang Q, Xu G. Efficacy and safety of Chinese herbal medicine for knee osteoarthritis: systematic review and meta-analysis of randomized controlled trials. Phytomedicine 2022;100:154029. 
  22. Peng X, Tang F, Yang Y, Li T, Hu X, Li S, Wu W, He K. Bidirectional effects and mechanisms of traditional Chinese medicine. J Ethnopharmacol 2022;298:115578. 
  23. Feng D, Fang Z, Zhang P. The melanin inhibitory effect of plants and phytochemicals: a systematic review. Phytomedicine 2022;107:154449. 
  24. Lee CS, Nam G, Bae IH, Park J. Whitening efficacy of ginsenoside F1 through inhibition of melanin transfer in cocultured human melanocytes-keratinocytes and three-dimensional human skin equivalent. J Ginseng Res 2019;43:300-4.  https://doi.org/10.1016/j.jgr.2017.12.005
  25. Moon IJ, Kim W, Kim SY, Lee J, Yoo H, Bang S, Song Y, Chang SE. Saponins of Korean red ginseng may protect human skin from adipokine-associated inflammation and pigmentation resulting from particulate matter exposure. Nutrients 2022;14. 
  26. Jiang R, Xu XH, Wang K, Yang XZ, Bi YF, Yan Y, Liu JZ, Chen XN, Wang ZZ, Guo XL, et al. Ethyl acetate extract from Panax ginseng C.A. Meyer and its main constituents inhibit alpha-melanocyte-stimulating hormone-induced melanogenesis by suppressing oxidative stress in B16 mouse melanoma cells. J Ethnopharmacol 2017;208:149-56.  https://doi.org/10.1016/j.jep.2017.07.004
  27. Liu J, Xu X, Jiang R, Sun L, Zhao D. Vanillic acid in Panax ginseng root extract inhibits melanogenesis in B16F10 cells via inhibition of the NO/PKG signaling pathway. Biosci Biotechnol Biochem 2019;83:1205-15.  https://doi.org/10.1080/09168451.2019.1606694
  28. Liu J, Jiang R, Zhou J, Xu X, Sun Z, Li J, Chen X, Li Z, Yan X, Zhao D, et al. Salicylic acid in ginseng root alleviates skin hyperpigmentation disorders by inhibiting melanogenesis and melanosome transport. Eur J Pharmacol 2021;910:174458. 
  29. Zhou Y, Zeng HL, Wen XY, Jiang L, Fu CH, Hu YB, Lei XX, Zhang L, Yu X, Yang SY, et al. Selaginellin inhibits melanogenesis via the MAPK signaling pathway. J Nat Prod 2022;85:838-45.  https://doi.org/10.1021/acs.jnatprod.1c00971
  30. Makbal R, Villareal MO, Gadhi C, Hafidi A, Isoda H. Argania spinosa fruit shell extract-induced melanogenesis via cAMP signaling pathway activation. Int J Mol Sci 2020:21. 
  31. Lim HY, Kim E, Park SH, Hwang KH, Kim D, Jung YJ, Kopalli SR, Hong YD, Sung GH, Cho JY. Antimelanogenesis effects of theasinensin A. Int J Mol Sci 2021:22. 
  32. Ukiya M, Sato D, Kimura H, Hirai Y, Nishina A. Tokoronin contained in Dioscorea tokoro makino ex miyabe suppressed alpha-MSH-induced melanogenesis in B16 cells via suppression of classical MAPK pathway activation. Chem Biodivers 2020;17:e2000077. 
  33. Tsang TF, Chan B, Tai WC, Huang G, Wang J, Li X, Jiang ZH, Hsiao WLW. Gynostemma pentaphyllum saponins induce melanogenesis and activate cAMP/PKA and Wnt/beta-catenin signaling pathways. Phytomedicine 2019;60:153008. 
  34. Bae IS, Kim SH. Milk exosome-derived MicroRNA-2478 suppresses melanogenesis through the akt-GSK3beta pathway. Cells 2021:10. 
  35. Kim T, Hyun CG. Imperatorin positively regulates melanogenesis through signaling pathways involving PKA/CREB, ERK, AKT, and GSK3beta/beta-catenin. Molecules 2022;27. 
  36. Jeon HJ, Kim K, Kim C, Lee SE. Antimelanogenic effects of curcumin and its dimethoxy derivatives: mechanistic investigation using B16F10 melanoma cells and zebrafish (Danio rerio) embryos. Foods 2023:12. 
  37. Hseu YC, Vudhya Gowrisankar Y, Wang LW, Zhang YZ, Chen XZ, Huang PJ, Yen HR, Yang HL. The in vitro and in vivo depigmenting activity of pterostilbene through induction of autophagy in melanocytes and inhibition of UVA-irradiated alpha-MSH in keratinocytes via Nrf2-mediated antioxidant pathways. Redox Biol 2021;44:102007. 
  38. Ye WL, Shen C, Xiong GL, Ding JJ, Lu AP, Hou TJ, Cao DS. Improving docking-based virtual screening ability by integrating multiple energy auxiliary terms from molecular docking scoring. J Chem Inf Model 2020;60:4216-30.  https://doi.org/10.1021/acs.jcim.9b00977
  39. Xue S, Li Z, Ze X, Wu X, He C, Shuai W, Marlow M, Chen J, Scurr D, Zhu Z, et al. Design, synthesis, and biological evaluation of novel hybrids containing dihydrochalcone as tyrosinase inhibitors to treat skin hyperpigmentation. J Med Chem 2023;66:5099-117.  https://doi.org/10.1021/acs.jmedchem.3c00012
  40. Lai Y, Feng Q, Zhang R, Shang J, Zhong H. The great capacity on promoting melanogenesis of three compatible components in vernonia anthelmintica (L.) willd. Int J Mol Sci 2021;22. 
  41. Han SY, Jang TW, Park HJ, Oh SS, Lee JB, Myoung SM, Park JH. Nypa fruticans Wurmb inhibits melanogenesis in isobutylmethylxanthine-treated melanoma via the PI3K/AKT/mTOR/CREB and MAPK signaling pathways. Exp Ther Med 2022;24:754. 
  42. Tang HH, Zhang YF, Yang LL, Hong C, Chen KX, Li YM, Wu HL. Serotonin/5-HT7 receptor provides an adaptive signal to enhance pigmentation response to environmental stressors through cAMP-PKA-MAPK, Rab27a/RhoA, and PI3K/AKT signaling pathways. FASEB J 2023;37:e22893. 
  43. Ferreira AM, de Souza AA, Koga RCR, Sena IDS, Matos MJS, Tomazi R, Ferreira IM, Carvalho JCT. Anti-melanogenic potential of natural and synthetic substances: application in zebrafish model. Molecules 2023;28. 
  44. Orhan IE, Deniz FSS. Inhibition of melanogenesis by some well-known polyphenolics: a review. Curr Pharm Biotechnol 2021;22:1412-23.  https://doi.org/10.2174/1386207323666201211102233
  45. Mo X, Kazmi HR, Preston-Alp S, Zhou B, Zaidi MR. Interferon-gamma induces melanogenesis via post-translational regulation of tyrosinase. Pigment Cell Melanoma Res 2022;35:342-55.  https://doi.org/10.1111/pcmr.13036
  46. Athapaththu A, Sanjaya SS, Lee KT, Karunarathne W, Choi YH, Hur SP, Kim GY. Pinostrobin suppresses the alpha-melanocyte-stimulating hormone-induced melanogenic signaling pathway. Int J Mol Sci 2023:24. 
  47. Rachmin I, Fisher DE. Microphthalmia-associated transcription factor phosphorylation: cross talk between GSK3 and MAPK signaling. Pigment Cell Melanoma Res 2019;32:345-7.  https://doi.org/10.1111/pcmr.12765
  48. An X, Lv J, Wang F. Pterostilbene inhibits melanogenesis, melanocyte dendricity and melanosome transport through cAMP/PKA/CREB pathway. Eur J Pharmacol 2022;932:175231. 
  49. Wang HM, Qu LQ, Ng JPL, Zeng W, Yu L, Song LL, Wong VKW, Xia CL, Law BYK. Natural Citrus flavanone 5-demethylnobiletin stimulates melanogenesis through the activation of cAMP/CREB pathway in B16F10 cells. Phytomedicine 2022;98:153941. 
  50. Wu KC, Hseu YC, Shih YC, Sivakumar G, Syu JT, Chen GL, Lu MT, Chu PC. Calycosin, a common dietary isoflavonoid, suppresses melanogenesis through the downregulation of PKA/CREB and p38 MAPK signaling pathways. Int J Mol Sci 2022:23. 
  51. Gryn-Rynko A, Sperkowska B, Majewski MS. Screening and structure-activity relationship for selective and potent anti-melanogenesis agents derived from species of mulberry (genus morus). Molecules 2022;27. 
  52. Liu C, Nueraihemaiti M, Zang D, Edirs S, Zou G, Aisa HA. Quercetin 3-O-(6"-O-E-caffeoyl)-beta-D-glucopyranoside, a flavonoid compound, promotes melanogenesis through the upregulation of MAPKs and akt/GSK3beta/beta-catenin signaling pathways. Int J Mol Sci 2023:24. 
  53. Uto T, Ohta T, Katayama K, Shoyama Y. Silibinin promotes melanogenesis through the PKA and p38 MAPK signaling pathways in melanoma cells. Biomed Res 2022;43:31-9.  https://doi.org/10.2220/biomedres.43.31
  54. Choi H, Yoon JH, Youn K, Jun M. Decursin prevents melanogenesis by suppressing MITF expression through the regulation of PKA/CREB, MAPKs, and PI3K/Akt/GSK-3beta cascades. Biomed Pharmacother 2022;147:112651. 
  55. Zang D, Niu C, Aisa HA. Amine derivatives of furocoumarin induce melanogenesis by activating Akt/GSK-3beta/beta-catenin signal pathway. Drug Des Devel Ther 2019;13:623-32.  https://doi.org/10.2147/DDDT.S180960
  56. Noh TK, Bang SH, Lee YJ, Cho HI, Jung MY, Kim I, Leem CH, Chang SE. The ion channel activator CyPPA inhibits melanogenesis via the GSK3beta/beta-catenin pathway. Chem Biol Interact 2019;300:1-7. https://doi.org/10.1016/j.cbi.2018.12.014