• Title/Summary/Keyword: α-galactosidase

Search Result 32, Processing Time 0.041 seconds

Heterologous Expression of a Thermostable α-Galactosidase from Parageobacillus thermoglucosidasius Isolated from the Lignocellulolytic Microbial Consortium TMC7

  • Wang, Yi;Wang, Chen;Chen, Yonglun;Cui, MingYu;Wang, Qiong;Guo, Peng
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.749-760
    • /
    • 2022
  • α-Galactosidase is a debranching enzyme widely used in the food, feed, paper, and pharmaceuticals industries and plays an important role in hemicellulose degradation. Here, T26, an aerobic bacterial strain with thermostable α-galactosidase activity, was isolated from laboratory-preserved lignocellulolytic microbial consortium TMC7, and identified as Parageobacillus thermoglucosidasius. The α-galactosidase, called T26GAL and derived from the T26 culture supernatant, exhibited a maximum enzyme activity of 0.4976 IU/ml when cultured at 60℃ and 180 rpm for 2 days. Bioinformatics analysis revealed that the α-galactosidase T26GAL belongs to the GH36 family. Subsequently, the pET-26 vector was used for the heterologous expression of the T26 α-galactosidase gene in Escherichia coli BL21 (DE3). The optimum pH for α-galactosidase T26GAL was determined to be 8.0, while the optimum temperature was 60℃. In addition, T26GAL demonstrated a remarkable thermostability with more than 93% enzyme activity, even at a high temperature of 90℃. Furthermore, Ca2+ and Mg2+ promoted the activity of T26GAL while Zn2+ and Cu2+ inhibited it. The substrate specificity studies revealed that T26GAL efficiently degraded raffinose, stachyose, and guar gum, but not locust bean gum. This study thus facilitated the discovery of an effective heat-resistant α-galactosidase with potent industrial application. Meanwhile, as part of our research on lignocellulose degradation by a microbial consortium, the present work provides an important basis for encouraging further investigation into this enzyme complex.

Production and Characterization of α-Galactosidases from Two Bacillus licheniformis Isolates (Bacillus licheniformis 분리균 2종의 α-Galactosidase 생산성과 효소특성)

  • Jin, Hyun Kyung;Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.195-203
    • /
    • 2015
  • Two bacterial strains, Bacillus licheniformis YB-1413 and YB-1414, producing extracellular α-galactosidase, were obtained from homemade Doenjang. On the basis of their biochemical properties, 16S rRNA sequences and random amplified polymorphic DNA patterns by polymerase chain reaction, they were found to be somewhat different from one another. α-Galactosidase productivities of the two isolates were increased by wheat bran, but drastically decreased by melibiose, raffinose and sucrose which were used as carbon sources. The enzyme productivities were increased by yeast extract as a nitrogen source with maximum levels of 1.87 U/ml for YB-1413 and 1.69 U/ml for YB-1414, respectively. The enzymes of both isolates exhibited maximum activity for hydrolysis of para-nitrophenyl-α-D-galactopyranoside (pNP-αGal) under reaction conditions of pH 6.0 and 45℃. Their hydrolyzing activities for pNP-αGal were drastically decreased by the addition of low concentrations of ribose and galactose. They were capable of hydrolyzing completely α-1,6 linked galactosyl residue in melibiose, raffinose and stachyose, which are known to be anti-nutritional factors in products of soybean and legume. In relation to the latter, the isolates YB-1413 and YB-1414 have potential applicability in improving soybean-fermented foods and the nutritional value of soybean feed.

Molecular Characterization of the α-Galactosidase SCO0284 from Streptomyces coelicolor A3(2), a Family 27 Glycosyl Hydrolase

  • Temuujin, Uyangaa;Park, Jae Seon;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1650-1656
    • /
    • 2016
  • The SCO0284 gene of Streptomyces coelicolor A3(2) is predicted to encode an α-galactosidase (680 amino acids) belonging to glycoside hydrolase family 27. In this study, the SCO0284 coding region was cloned and overexpressed in Streptomyces lividans TK24. The mature form of SCO0284 (641 amino acids, 68 kDa) was purified from culture broth by gel filtration chromatography, with 83.3-fold purification and a yield of 11.2%. Purified SCO0284 showed strong activity against p-nitrophenyl-α-D-galactopyranoside, melibiose, raffinose, and stachyose, and no activity toward lactose, agar (galactan), and neoagarooligosaccharides, indicating that it is an α-galactosidase. Optimal enzyme activity was observed at 40℃ and pH 7.0. The addition of metal ions or EDTA did not affect the enzyme activity, indicating that no metal cofactor is required. The kinetic parameters Vmax and Km for p-nitrophenyl-α-D-galactopyranoside were 1.6 mg/ml (0.0053 M) and 71.4 U/mg, respectively. Thin-layer chromatography and mass spectrometry analysis of the hydrolyzed products of melibiose, raffinose, and stachyose showed perfect matches with the masses of the sodium adducts of the hydrolyzed products, galactose (M+Na, 203), melibiose (M+Na, 365), and raffinose (M+Na, 527), respectively, indicating that it specifically cleaves the α-1,6-glycosidic bond of the substrate, releasing the terminal D-galactose.

Biochemical Characterization of α-Galactosidase-Producing Thermophilic Bacillus coagulans KM-1 (α-Galactosidase를 생산하는 고온성 Bacillus coagulans KM-1 균주의 생화학적 특성)

  • Nam, Ki Ho;Jang, Mi Soon;Park, Hee Yeon;Koneva, Elena
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.5
    • /
    • pp.516-521
    • /
    • 2014
  • A bacterium producing ${\alpha}$-galactosidase (${\alpha}$-$\small{D}$-galactoside galactohydrolase, EC 3.2.1.22) was isolated. The isolate, KM-1 was identified as Bacillus coagulans based on its 16S rRNA sequence, morphology, and biochemical properties. ${\alpha}$-Galactosidase activity was detected the culture supernatant of B. coagulans KM-1. The bacterium showed the maximum activity for hydrolyzing para-nitrophenyl-${\alpha}$-$\small{D}$-galactopyranoside (pNP-${\alpha}Gal$) at pH 6.0 and $50^{\circ}C$. It hydrolyzed oligomeric substrates such as melibiose, raffinose, and stachyose liberating a galactose residue, indicating that the B. coagulans KM-1 ${\alpha}$-galactosidase hydrolyzed ${\alpha}$-1,6 linkage. The results suggest that the decreased stachyose and raffinose contents in fermented soybean meal are due to the ${\alpha}$-galactosidase activity.

Phenotypic characteristics and antimicrobial susceptibilities of motile aeromonads isolated from freshwater fish in Korea and Japan (한국과 일본의 담수어에서 분리되는 운동성 aeromonads의 표현형적 특성과 약제감수성)

  • Han, Hyun-Ja;Govindasami, Vivekanandhan;Hirono, Ikuo;Aoki, Takahashi
    • Journal of fish pathology
    • /
    • v.20 no.3
    • /
    • pp.249-255
    • /
    • 2007
  • We investigated the phenotypic characteristics by using API20E, APIZYM and determined minimum inhibitory concentrations (MICs) of 7 antibiotics in motile aeromonads isolated from freshwater fishes in Korea and Japan, and 4 American Type Culture Collection (ATCC) strains. All isolates (n=7) were identified as motile Aeromonas species according to API20E test. Lysine decarboxylase activity and acid production from 4 different carbohydrates including mannitol, rhamnose, amygdalin and arabinose were observed in various strains. In enzymatic activities by APIZYM, all isolates showed negative reactions in valine and cystine arylamidases, α-chymotrypsin, α-galactosidase, β-glucuronidase, α-glucosidase, α-mannosidase and α-fucosidase. Although the intensities of each enzymatic activity were diverse in alkaline phosphatase, esterase-lipase, leucine arylamidase, β-galactosidase and N-acetyl-β-glucosaminidase, all isolates showed positive reactions. All isolates were resistant to ampicillin sodium (MIC>100㎍/ml), but sensitive to chloramphenicol (MIC≤1.6㎍/ml). However, recently isolated strains (AC9804, AC0202 and GMA0361) were commonly resistant to tetracycline (MIC=50㎍/ml). Furthermore, AC9804 was resistant to oxolinic acid (MIC=12.5㎍/ml). GMA0361 was resistant to kanamycin sulfate (MIC>100㎍/ml) and streptomycin sulfate (MIC>100 ㎍/ml).

Systematic Review on Application of Whey Towards Production of Galacto-oligosaccharide Using β-Galactosidase Enzyme from Pichia pastoris

  • Ramachandran, C;Oh, Deog-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.4
    • /
    • pp.304-311
    • /
    • 2020
  • Galacto-oligosaccharides (GOS) are prebiotics that have a beneficial effect on human health by promoting the growth of probiotic bacteria in the gut, in addition to having various applications in the food industry. GOS are generally produced from lactose in a reaction catalyzed by β-galactosidase. Synthesis of GOS from whey permeate (WP) (ultrafiltration of whey, concentrated then spray dried) using surface engineered β-galactosidase in Pichia pastoris (P. pastoris) is a novel method to convert waste into a valuable product. Cell-surface display is the expression of peptides and proteins on the surface of living cells by fusing them to functional components of cells. Surface engineered cells have many potential uses. The Flo1p flocculation functional domain, thought to be located near the N terminus, recognizes and adheres non-covalently to cell-wall components such as α-mannan carbohydrates, causing reversible aggregation of cells into flocs.

Enzymatic Studies on the α-Galactosidases from Soybean and Aspergillus niger (대두(大豆) 및 Aspergillus niger α-galactosidase의 효소학적(酵素學的) 연구(硏究))

  • Keum, Jong-Hwa;Oh, Man-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.18 no.1
    • /
    • pp.49-73
    • /
    • 1991
  • To elucidate enzymatic properties of $\alpha$-galactosidases (EC3, 2, 1, 22) from germinated soybean and Aspergillus niger changes in the enzyme activities and oligosaccharide contents during germination of soybean were determined and $\alpha$-galactosidases from germinated soybean and wheat bran culture of Aspergillus niger were purified by ammonium sulfate fractionation, ion exchange chromatography and gel filtration. Their chemical and enzymatic properties were investigated and the results obtained were summarized as follows : 1. $\alpha$-Galactosidase activity of soybean was maximized when it was germinated at $25^{\circ}C$ for 120 hours. And raffinose and stachyose in soybean were decomposed completely after 96 hours and 120 hours of germination, respectively. 2. The highest level of $\alpha$-Galactosidase activity was obtained when Aspergillus niger was grown on wheat bran medium at $30^{\circ}C$ for 96 hours. 3. Soybean $\alpha$-galactosidase was purified by 6.6 fold by ammonium slufate fractionation, ion exchange chromatography on DEAE-Cellulose and Sephadex A-50., and gel filtration on Sephadex G-150. Its specific activity was 825 units/mg protein and the yield was 2.5% of the total activity of crude extracts. 4. Aspergillus niger $\alpha$-galactosidase was purified by 23.7 fold. Its specific activity was 1,229 units/mg protein and the yield was 14% of the total activity of wheat bran culture. 5. The purified $\alpha$-galactosidases of soybean and Aspergillus niger were found to be homogeneous by polyacrylamide gel electrophoresis and by HPLC. 6. Chemical properties of the purified $\alpha$-galactosidases were : 1) The soybean $\alpha$-galactosidase was monomeric and its molecular weight was estimated to be 30,000 by SDS-PAGE whereas the Aspergillus niger $\alpha$-galactosidase was a tetrameric glycoprotein which consisted of identical subunits with molecular weight of 28,000 each.

  • PDF

Purification and Characterization of an α-D-Galactosidase from Grape Berry

  • Kang, Han-Chul;Kim, Tae-Su
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.141-146
    • /
    • 2000
  • Glycosidase activities were tested from the grape berries, Vitis labruscana B. Takasumi. Among various glycosidases, $\alpha$-D-galactosidase was found to be the most active in the flesh and other glycosidases were considerably active in the order of the following: $\alpha$-D-mannosidase>$\alpha$-D-glucosidase>$\beta$-D-glucosidase>$\beta$-D-galactosidase. In the seeds, $\alpha$-D-glucosidase activity was the highest and other glycosidases such as $\alpha$-D-galactosidase, $\beta$-D-glucosidase, and $\beta$-D-galactosidase were still significantly active. The $\alpha$-D-galactosidase in the grape flesh was purified over 83-folds through salting-out with $(NH_4)_2SO_4$ and a series of chromatographies employing Sephadex G-50, Octyl-Sepharose, Q-Sepha- rose, and Biogel P-100. The enzyme was a monomer of 45 kDs as determined through SDS-PAGE and Sephacryl S-200 chromatography. The purified enzyme showed a preference of $\alpha$-D-galactose to $\beta$-D-galactose as a substrate about 5.4 times. Sulfhydryl specific reagents such as N-ethylmaleimide and iodoacetamide significantly inhibited the enzyme activity to the extents of 48 and 52% of its initial activity, respectively. The optimumpH range of $\alpha$-D-galactosidase was around 6.5-7.0. The enzyme activity increased by 46% in the presence of 1mM $Fe^{2+}$.

  • PDF

Effect of β-Mannanase and α-Galactosidase Supplementation to Soybean Meal Based Diets on Growth, Feed Efficiency and Nutrient Digestibility of Rainbow Trout, Oncorhynchus mykiss (Walbaum)

  • Yigit, Nalan Ozgur;Koca, Seval Bahadir;Isil, Behire;Diler, Ibrahim
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.700-705
    • /
    • 2014
  • A 12-week feeding trial was conducted with 87 g rainbow trout to evaluate the effects on growth performances, feed efficiency and nutrient digestibility of adding ${\beta}$-mannanase and ${\alpha}$-galactosidase enzymes, solely or in combination. Seven diets were prepared by adding ${\beta}$-mannanase, ${\alpha}$-galactosidase and mixed enzyme at two different levels (1 g/kg and 2 g/kg) to control diet (without enzyme) including soybean meal. Mixed enzymes (1 g/kg, 2 g/kg) were prepared by adding ${\beta}$-mannanase and ${\alpha}$-galactosidase at the same doses (0.5+0.5 g/kg and 1+1 g/kg). At the end of the experiment, addition of ${\beta}$-mannanase, ${\alpha}$-galactosidase and mixed enzyme to diet containing 44% soybean meal had no significant effects on growth performance and gain:feed (p>0.05). In addition, adding ${\beta}$-mannanase, ${\alpha}$-galactosidase and mixed enzyme in different rations to trout diets had no affect on nutrient digestibility and body composition (p>0.05).

Molecular Characterization of a Novel 1,3-α-3,6-Anhydro-L-Galactosidase, Ahg943, with Cold- and High-Salt-Tolerance from Gayadomonas joobiniege G7

  • Seo, Ju Won;Tsevelkhorloo, Maral;Lee, Chang-Ro;Kim, Sang Hoon;Kang, Dae-Kyung;Asghar, Sajida;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1659-1669
    • /
    • 2020
  • 1,3-α-3,6-anhydro-L-galactosidase (α-neoagarooligosaccharide hydrolase) catalyzes the last step of agar degradation by hydrolyzing neoagarobiose into monomers, D-galactose, and 3,6-anhydro-L-galactose, which is important for the bioindustrial application of algal biomass. Ahg943, from the agarolytic marine bacterium Gayadomonas joobiniege G7, is composed of 423 amino acids (47.96 kDa), including a 22-amino acid signal peptide. It was found to have 67% identity with the α-neoagarooligosaccharide hydrolase ZgAhgA, from Zobellia galactanivorans, but low identity (< 40%) with the other α-neoagarooligosaccharide hydrolases reported. The recombinant Ahg943 (rAhg943, 47.89 kDa), purified from Escherichia coli, was estimated to be a monomer upon gel filtration chromatography, making it quite distinct from other α-neoagarooligosaccharide hydrolases. The rAhg943 hydrolyzed neoagarobiose, neoagarotetraose, and neoagarohexaose into D-galactose, neoagarotriose, and neoagaropentaose, respectively, with a common product, 3,6-anhydro-L-galactose, indicating that it is an exo-acting α-neoagarooligosaccharide hydrolase that releases 3,6-anhydro-L-galactose by hydrolyzing α-1,3 glycosidic bonds from the nonreducing ends of neoagarooligosaccharides. The optimum pH and temperature of Ahg943 activity were 6.0 and 20℃, respectively. In particular, rAhg943 could maintain enzyme activity at 10℃ (71% of the maximum). Complete inhibition of rAhg943 activity by 0.5 mM EDTA was restored and even, remarkably, enhanced by Ca2+ ions. rAhg943 activity was at maximum at 0.5 M NaCl and maintained above 73% of the maximum at 3M NaCl. Km and Vmax of rAhg943 toward neoagarobiose were 9.7 mg/ml and 250 μM/min (3 U/mg), respectively. Therefore, Ahg943 is a unique α-neoagarooligosaccharide hydrolase that has cold- and high-salt-adapted features, and possibly exists as a monomer.