Browse > Article
http://dx.doi.org/10.13103/JFHS.2020.35.4.304

Systematic Review on Application of Whey Towards Production of Galacto-oligosaccharide Using β-Galactosidase Enzyme from Pichia pastoris  

Ramachandran, C (Department of Food Science and Biotechnology, Kangwon National University)
Oh, Deog-Hwan (Department of Food Science and Biotechnology, Kangwon National University)
Publication Information
Journal of Food Hygiene and Safety / v.35, no.4, 2020 , pp. 304-311 More about this Journal
Abstract
Galacto-oligosaccharides (GOS) are prebiotics that have a beneficial effect on human health by promoting the growth of probiotic bacteria in the gut, in addition to having various applications in the food industry. GOS are generally produced from lactose in a reaction catalyzed by β-galactosidase. Synthesis of GOS from whey permeate (WP) (ultrafiltration of whey, concentrated then spray dried) using surface engineered β-galactosidase in Pichia pastoris (P. pastoris) is a novel method to convert waste into a valuable product. Cell-surface display is the expression of peptides and proteins on the surface of living cells by fusing them to functional components of cells. Surface engineered cells have many potential uses. The Flo1p flocculation functional domain, thought to be located near the N terminus, recognizes and adheres non-covalently to cell-wall components such as α-mannan carbohydrates, causing reversible aggregation of cells into flocs.
Keywords
Galactooligosaccharides; ${\beta}$-Galactosidase; Whey; Mannan; Flocculation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, H., Zhang, M., Ma, G., Hypolipidemic effect of the polysaccharide from Pholiota nameko. Nutrition, 26(5), 556-562 (2010).   DOI
2 Zhang, S., Zhang, Q., Zhang, D., Wang, C., Yan, C., Antiosteoporosis activity of a novel Achyranthes bidentata polysaccharide via stimulating bone formation. Carbohydr. Polym., 184, 288-298 (2018).   DOI
3 Mussatto, S.I., Mancilha, I.M., Non-digestible oligosaccharides: a review. Carbohydr. Polym., 68(3), 587-597 (2007).   DOI
4 Asraf, S.S., Gunasekaran, P., 2010. Current trends of sgalactosidase research and application. Current Research, Technology and Education Topics In Applied Microbiology And Microbial Biotechnology. Microbiology Book Series Formatex Research Center, Badajoz, Spain, pp. 880-890.
5 El-Sayed, M.M., Chase, H.A., Trends in whey protein fractionation. Biotechnol. Lett., 33(8), 1501-1511 (2011).   DOI
6 Yang, S., Hai, F.I., Nghiem, L.D., Price, W.E., Roddick, F., Moreira, M.T., Magram, S.F., Understanding the factors controlling the removal of trace organic contaminants by whiterot fungi and their lignin modifying enzymes: a critical review. Bioresour. Technol., 141, 97-108 (2013).   DOI
7 Serebriiskii, I.G., Golemis, E.A., Uses of lacZ to study gene function: evaluation of ${\beta}$-galactosidase assays employed in the yeast two-hybrid system. Anal. Biochem., 285(1), 1-15 (2000).   DOI
8 Torres, D.P., Gonçalves, M.D.P.F., Teixeira, J.A., Rodrigues, L.R., Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Compr. Rev. Food Sci. Food Saf., 9(5), 438-454 (2010).   DOI
9 Lu, L.L., Xiao, M., Li, Z.Y., Li, Y.M., Wang, F.S., A novel transglycosylating ${\beta}$-galactosidase from Enterobacter cloacae B5. Process Biochem., 44(2), 232-236 (2009).   DOI
10 Splechtna, B., Nguyen, T.H., Steinböck, M., Kulbe, K.D., Lorenz, W., & Haltrich, D., Production of prebiotic galactooligosaccharides from lactose using ${\beta}$-galactosidases from Lactobacillus reuteri. J. Agric. Food Chem., 54(14), 4999-5006 (2006).   DOI
11 Park, A.R., Oh, D.K., Galacto-oligosaccharide production using microbial ${\beta}$-galactosidase: current state and perspectives. Appl. Microbiol. Biotechnol., 85(5), 1279-1286 (2010).   DOI
12 Urrutia, P., Rodriguez-Colinas, B., Fernandez-Arrojo, L., Ballesteros, A.O., Wilson, L., Illanes, A., Plou, F.J., Detailed analysis of galacto-oligosaccharides synthesis with ${\beta}$-galactosidase from Aspergillus oryzae. J. Agric. Food Chem., 61(5), 1081-1087 (2013).   DOI
13 Carevic, M., Corovic, M., Mihailovic, M., Banjanac, K., Milisavljevic, A., Velickovic, D., Bezbradica, D., Galactooligosaccharide synthesis using chemically modified ${\beta}$-galactosidase from Aspergillus oryzae immobilised onto macroporous amino resin. Int. Dairy J., 54, 50-57 (2016).   DOI
14 Yadav, J.S.S., Yan, S., Pilli, S., Kumar, L., Tyagi, R.D., Surampalli, R.Y., Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnol. Adv., 33(6), 756-774 (2015).   DOI
15 Patel, S.R., Murthy, Z.P., Waste valorization: Recovery of lactose from partially deproteinated whey by using acetone as anti-solvent. Dairy Sci. Technol., 91(1), 53-63 (2011).
16 Wang, J., Wang, X., Shi, L., Qi, F., Zhang, P., Zhang, Y., Zhou, X., Song, Z., Cai, M., Methanol-independent protein expression by AOX1 promoter with trans-acting elements engineering and glucose-glycerol-shift induction in Pichia pastoris. Sci. Rep., 7, 41850 (2017).   DOI
17 Coughlan, L.M., Cotter, P.D., Hill, C., Alvarez-Ordonez, A., Biotechnological applications of functional metagenomics in the food and pharmaceutical industries. Front. Microbiol., 6, 672 (2015).
18 Fanaro, S., Boehm, G., Garssen, J., Knol, J., Mosca, F., Stahl, B., & Vigi, V. Galacto-oligosaccharides and long-chain fructo?oligosaccharides as prebiotics in infant formulas: A review. Acta paediatr., 94, 22-26 (2005).   DOI
19 Wang, W., Bao, Y., Hendricks, G.M., Guo, M., Consistency, microstructure and probiotic survivability of goats' milk yoghurt using polymerized whey protein as a co-thickening agent. Int. Dairy J., 24(2), 113-119 (2012).   DOI
20 Tamime, A.Y., 2009. Milk Processing and Quality Management. John Wiley & Sons, Scotland, UK, pp. 4-344.
21 Calik, P., Ata, O., Gunes, H., Massahi, A., Boy, E., Keskin, A., Ozturk, S., Zerze, G.H. Ozdamar, T.H., Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: from carbon source metabolism to bioreactor operation parameters. Biochem. Eng. J., 95, 20-36 (2015).   DOI
22 Zhang, A.L., Luo, J.X., Zhang, T.Y., Pan, Y.W., Tan, Y.H., Fu, C.Y., Tu, F.Z., Recent advances on the GAP promoter derived expression system of Pichia pastoris. Mol. Biol. Rep., 36(6), 1611-1619 (2009).   DOI
23 Bollok, M., Resina, D., Valero, F., Ferrer, P., Recent patents on the Pichia pastoris expression system: expanding the toolbox for recombinant protein production. Recent Pat. Biotechnol., 3(3), 192-201 (2009).   DOI
24 Waterham, H.R., Digan, M.E., Koutz, P.J., Lair, S.V., Cregg, J.M., Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene, 186(1), 37-44 (1997).   DOI
25 Ito, M., Deguchi, Y., Miyamori, A., Matsumoto, K., Kikuchi, H., Matsumoto, K., Kobayashi, Y., Yajima, T., Kan, T., Effects of administration of galacto-oligosaccharides on the human faecal microflora, stool weight and abdominal sensation. Microb. Ecol. Health Dis., 3(6), 285-292 (1990).   DOI
26 Law, B.A., Tamime, A.Y., 2011. Technology of Cheese Making (Vol. 18). John Wiley & Sons, Scotland, United Kingdom, p. 512.
27 Di Gianvito, P., Tesniere, C., Suzzi, G., Blondin, B., Tofalo, R., FLO 5 gene controls flocculation phenotype and adhesive properties in a Saccharomyces cerevisiae sparkling wine strain. Sci. Rep., 7(1), 1-12 (2017).   DOI
28 Allen, M.D., A comparison of analytical methods for quantifying denatured whey proteins and their correlation to solubility. Master's thesis, California Polytechnic State University, San Luis Obispo, CA, USA (2010).
29 Joseph, M., Alavi, S., Johnson, Q., Walton, S., Webb, P., Enhancing the nutrient bioavailability of food aid products. A Report from the Food Aid Quality Review, Boston, United States Agency for International Development (USAID, MA: Tufts University), (2019).
30 Macwan, S.R., Dabhi, B.K., Parmar, S.C., Hati, S., Prajapatiw, S., Aparnathi, K.D., Development of fermented dairy products from lactic acid bacterial biomass grown in whey based medium. Int. J. Fermented Foods, 7(1), 45-54 (2018).
31 Kumar, K., Singh, J., Chandra, S., Formulation of whey based pineapple herbal beverages and its storage conditions. Chem. Sci. Rev. Lett., 6(21), 198-203 (2017).
32 Almeida, K.E., Tamime, A.Y., Oliveira, M.N., Influence of total solids contents of milk whey on the acidifying profile and viability of various lactic acid bacteria. LWT., 42(2), 672-678 (2009).   DOI
33 Kondepudi, K.K., Ambalam, P., Nilsson, I., Wadstr, T., Prebiotic-non-digestible oligosaccharides preference of probiotic Bifidobacteria and antimicrobial activity against Clostridium difficile. Anaerobe, 18(5), 489-497 (2012).   DOI
34 Goossens, K., Willaert, R., Flocculation protein structure and cell-cell adhesion mechanism in Saccharomyces cerevisiae. Biotechnol. Lett., 32(11), 1571-1585 (2010).   DOI
35 Domingo, J.L., Stationary phase-specific expression of dominant flocculation genes for controlled flocculation of yeast. PhD thesis: Stellenbosch University, Stellenbosch, Republic of South Africa (2003).
36 Roach, P., Parker, T., Gadegaard, N., Alexander, M.R., Surface strategies for control of neuronal cell adhesion: a review. Surf. Sci. Rep., 65(6), 145-173 (2010).   DOI
37 Domingues, L., Lima, N., Teixeira, J.A., Alcohol production from cheese whey permeate using genetically modified flocculent yeast cells. Biotechnol. Bioeng., 72(5), 507-514 (2001).   DOI
38 Guimaraes, P.M., Teixeira, J.A., Domingues, L., Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol. Adv., 28(3), 375-384 (2010).   DOI
39 Lamsal, B.P., Production, health aspects and potential food uses of dairy prebiotic galacto-oligosaccharides. J. Sci. Food Agric., 92(10), 2020-2028 (2012).   DOI
40 Garcia-Cayuela, T., Diez-Municio, M., Herrero, M., Martinez-Cuesta, M.C., Pelaez, C., Requena, T., Moreno, F.J., Selective fermentation of potential prebiotic lactosederived oligo-saccharides by probiotic bacteria. Int. Dairy J., 38(1), 11-15 (2014).   DOI
41 Fukumoto, S., Tatewaki, M., Yamada, T., Fujimiya, M., Mantyh, C., Voss, M., Eubanks, S., Harris, M., Pappas, T.N., Takahashi, T., Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 284(5), R1269-R1276 (2003).   DOI
42 Hopkins, M.J., Macfarlane, G.T., Nondigestible oligosaccharides enhance bacterial colonization resistance against Clostridium difficile in vitro. Appl. Environ. Microbiol., 69(4), 1920-1927 (2003).   DOI
43 Buddington, R.K., Kelly-Quagliana, K., Buddington, K.K., Kimura, Y., Non-digestible oligo-saccharides and defense functions: lessons learned from animal models. Br. J. Nutr., 87(S2), S231-S239 (2002).   DOI
44 Denny, P.C., Denny, P.A., Takashima, J., Si, Y., Navazesh, M., Galligan, J.M., A novel saliva test for caries risk assessment. J. Calif. Dent. Assoc., 34(4), 287 (2006).
45 Patel, S., Goyal, A., Functional oligosaccharides: production, properties and applications. World J. Microbiol. Biotechnol., 27(5), 1119-1128 (2011).   DOI
46 Gobinath, D., Madhu, A.N., Prashant, G., Srinivasan, K., Prapulla, S.G., Beneficial effect of xylo-oligosaccharides and fructo-oligosaccharides in streptozotocin-induced diabetic rats. Br. J. Nutr., 104(1), 40-47 (2010).   DOI
47 Lemieszek, M., Rzeski, W., Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class. Contemp. Oncol., 16(4), 285 (2012).
48 Ilyas, R., Wallis, R., Soilleux, E.J., Townsend, P., Zehnder, D., Tan, B.K., Sim, R.B., Lehnert, H., Randeva, H.S., Mitchell, D.A., High glucose disrupts oligo-saccharide recognition function via competitive inhibition: a potential mechanism for immune dysregulation in Diabetes mellitus. Immunobiology, 216(1-2), 126-131 (2011).   DOI
49 Zhang, J., Yu, Y., Zhang, Z., Ding, Y., Dai, X., Li, Y., Effect of polysaccharide from cultured Cordyceps sinensis on immune function and anti-oxidation activity of mice exposed to 60Co. Int. Immunopharmacol., 11(12), 2251-2257 (2011).   DOI
50 Wang, N., Yang, J., Lu, J., Qiao, Q., Wu, T., Du, X., Bao, G., He, X., A polysaccharide from Salvia miltiorrhiza Bunge improves immune function in gastric cancer rats. Carbohydr. Polym., 111, 47-55 (2014).   DOI
51 Fedorov, S.N., Ermakova, S.P., Zvyagintseva, T.N., Stonik, V.A., Anticancer and cancer preventive properties of marine polysaccharides: Some results and prospects. Mar. Drugs, 11(12), 4876-4901 (2013).   DOI
52 Sanjeewa, K.A., Lee, J.S., Kim, W.S., Jeon, Y.J., The potential of brown-algae polysaccharides for the development of anticancer agents: An update on anticancer effects reported for fucoidan and laminaran. Carbohydr. Polym., 177, 451-459 (2017).   DOI
53 Sangwan, V., Tomar, S.K., Singh, R.R.B., Singh, A.K., Ali, B., Galacto-oligosaccharides: novel components of designer foods. Journal of Food Science, 76(4), R103-R111 (2011).   DOI
54 Vandenplas, Y., Zakharova, I., Dmitrieva, Y., Oligosaccharides in infant formula: more evidence to validate the role of prebiotics. Br. J. Nutr., 113(9), 1339-1344 (2015).   DOI
55 Borai, I.H., Ezz, M.K., Rizk, M.Z., Matloub, A.A., Aly, H.F., El, A., Farrag, R., Fouad, G.I., Hypolipidemic and anti-atherogenic effect of sulphated polysaccharides from the green alga Ulva fasciata. Int. J. Pharm. Sci. Rev. Res, 31(1), 1-12 (2015).
56 Ren, S., Newby, D., Li, S.C., Walkom, E., Miller, P., Hure, A., Attia, J., Effect of the adult pneumococcal polysaccharide vaccine on cardiovascular disease: a systematic review and meta-analysis. Open Heart, 2(1), e000247 (2015).   DOI