Browse > Article
http://dx.doi.org/10.4014/jmb.2201.01022

Heterologous Expression of a Thermostable α-Galactosidase from Parageobacillus thermoglucosidasius Isolated from the Lignocellulolytic Microbial Consortium TMC7  

Wang, Yi (Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences)
Wang, Chen (Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences)
Chen, Yonglun (Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences)
Cui, MingYu (Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences)
Wang, Qiong (Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences)
Guo, Peng (Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.6, 2022 , pp. 749-760 More about this Journal
Abstract
α-Galactosidase is a debranching enzyme widely used in the food, feed, paper, and pharmaceuticals industries and plays an important role in hemicellulose degradation. Here, T26, an aerobic bacterial strain with thermostable α-galactosidase activity, was isolated from laboratory-preserved lignocellulolytic microbial consortium TMC7, and identified as Parageobacillus thermoglucosidasius. The α-galactosidase, called T26GAL and derived from the T26 culture supernatant, exhibited a maximum enzyme activity of 0.4976 IU/ml when cultured at 60℃ and 180 rpm for 2 days. Bioinformatics analysis revealed that the α-galactosidase T26GAL belongs to the GH36 family. Subsequently, the pET-26 vector was used for the heterologous expression of the T26 α-galactosidase gene in Escherichia coli BL21 (DE3). The optimum pH for α-galactosidase T26GAL was determined to be 8.0, while the optimum temperature was 60℃. In addition, T26GAL demonstrated a remarkable thermostability with more than 93% enzyme activity, even at a high temperature of 90℃. Furthermore, Ca2+ and Mg2+ promoted the activity of T26GAL while Zn2+ and Cu2+ inhibited it. The substrate specificity studies revealed that T26GAL efficiently degraded raffinose, stachyose, and guar gum, but not locust bean gum. This study thus facilitated the discovery of an effective heat-resistant α-galactosidase with potent industrial application. Meanwhile, as part of our research on lignocellulose degradation by a microbial consortium, the present work provides an important basis for encouraging further investigation into this enzyme complex.
Keywords
${\alpha}$-Galactosidase; thermophilic enzyme; enzymatic properties; GH36; heterologous expression;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Katrolia P. 2013. Biotechnological potential of microbial α-galactosidases. Crit. Rev. Biotechnol. 34: 307-317.   DOI
2 Semenova EM, Sokolova DS, Grouzdev DS, Poltaraus AB, Vinokurova NG, Tourova TP, et al. 2019. Geobacillus proteiniphilus sp. nov., a thermophilic bacterium isolated from a high-temperature heavy oil reservoir in China. Int. J. Syst. Evol. Microbiol. 69: 3001-3008.   DOI
3 Wang W. 2015. The Molecular Detection of Corynespora Cassiicola on Cucumber by PCR Assay Using DNAman Software and NCBI. 9th International Conference on Computer and Computing Technologies in Agriculture (CCTA). pp. 248-258. 10.1007/978-3-319-48354-2_26. hal-01614171.   DOI
4 Armenteros JJA, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S, et al. 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37l: 420-423.
5 Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, et al. 2004. The Pfam protein families database. Nucleic Acids Res. 32(Database issue): D138-141.   DOI
6 Guex N, Peitsch MC. 1997. SWISS-MODEL and the Swiss-Pdb viewer: an environment for comparative protein modeling. Electrophoresis 18: 2714-2723.   DOI
7 Ulya M, Oesman F, Iqbalsyah TM. 2019. Low molecular weight alkaline thermostable α-amylase from Geobacillus sp. nov. Heliyon 5: e02171.   DOI
8 Merceron R, Foucault M, Haser R, Mattes R, Watzlawick H, Gouet P. 2012. The molecular mechanism of thermostable α-galactosidases AgaA and AgaB explained by X-ray crystallography and mutational studies. J. Biol. Chem. 287: 39642-39652.   DOI
9 Zhang J, Song G, Mei Y, Li R, Zhang H, Liu Y. 2019. Present status on removal of raff inose family oligosaccharides-a review. Czech J. Food Sci. 37: 141-154.   DOI
10 Semenova EM, Sokolova DS, Grouzdev DS, Poltaraus AB, Vinokurova NG, Tourova TP, et al. 2019. Geobacillus proteiniphilus sp. nov., a thermophilic bacterium isolated from a high-temperature heavy oil reservoir in China. Int. J. Syst. Evol. Microbiol. 69: 3001-3008.   DOI
11 Liu J, Sun D, Zhu J, Liu C, Liu W. 2021. Carbohydrate-binding modules targeting branched polysaccharides: overcoming side-chain recalctirance in a non-catalytic apporoch. Bioresour. Bioprocess 8: 1-11.   DOI
12 Xu Y, Wang YH, Liu TQ, Zhang H, Zhang H, Li J. 2018. The GlaA signal peptide substantially increases the expression and secretion of α-galactosidase in Aspergillus niger. Biotechnol. Lett. 40: 949-955.   DOI
13 Fridjonsson O, Watzlawick H, Gehweiler A, Mattes R. 1999. Thermostable α-galactosidase from Bacillus stearothermophilus NUB3621: cloning, sequencing and characterization. FEMS Microbiol. Lett. 176: 147-153.   DOI
14 Tailford LE, Ducros VMA, Flint JE, Roberts SM, Morland C, Zechel DL, et al. 2009. Understanding how diverse β-mannanase recognize heterogeneous substrates. Biochemistry 48: 7009-7018.   DOI
15 Liljestoum PL, Liljestrom P. 1987. Nucleotide sequence of the melA gene, coding for α-galactosidase in Escherichia coli K-12. Nucleic Acids Res. 15: 2213-2220.   DOI
16 Bhatia S, Singh A, Batra N, Singh J. 2020. Microbial production and biotechnological applications of α-galactosidase. Int. J. Biol. Macromol. 150: 1294-1313.   DOI
17 Fredslund F, Hachem MA, Larsen RJ, Sorensen PG, Coutinho PM, Lo Leggio L, et al. 2011. Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding. J. Mol. Biol. 412: 466-480.   DOI
18 Dey PM. 1984. Characteristic features of an α-galactosidase from mung beans. Eur. J. Biochem. 140: 385-390.   DOI
19 Junior JCB, Viana PA, de Rezende ST, Soares NDFF, Guimaraes VM. 2018. Immobilization of an alpha-galactosidase from Debaryomyces hansenni UFV-1 in cellulose film and its appilication in oligosaccharides hydrolysis. Food Bioprod. Process 111: 30-36.   DOI
20 Zhou J, Lu Q, Zhang R, Wang Y, Wu Q, Li J, et al. 2016. Characterization of two glycoside hydrolase family 36 α-galactosidases: Novel transglycosylation activity, lead-zinc tolerance, alkaline and multiple pH optima, and low-temperature activity. Food Chem. 194: 156-166.   DOI
21 Zhang B, Chen Y, Li Z, Lu W, Cao Y. 2011. Cloning and functional expression of α-galactosidase cDNA from Penicillium janczewskii zaleski. Biologia 66: 205-212.   DOI
22 Taha M, Foda M, Shahsavari E, Aburto-Medina A, Adetutu E, Ball A. 2016. Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Curr. Opin. Biotechnol. 38: 190-197.   DOI
23 Kaushal G, Kumar J, Sangwan RS, Singh SP. 2018. Metagenomic analysis of geothermal water reservoir sites exploring carbohydrate-related thermozymes. Int. J. Biol. Macromol. 119: 882-895.   DOI
24 Cao Y, Wang Y, Meng K, Bai Y, Shi P, Luo H, et al. 2009. A novel protease-resistant α-galactosidase with high hydrolytic activity from Gibberella sp. F75: gene cloning, expression, and enzymatic characterization. Appl. Microbiol. Biotechnol. 83: 875-884.   DOI
25 Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. 2008. NCBI BLAST: a better web interface. Nucleic Acids Res. 36: 5-9.
26 Aguilar-Moncayo M, Takai T, Higaki K, Mena-Barragan T, Hirano Y, Yura K, et al. 2012. Tuning glycosidase inhibition through aglycone interactions: pharmacological chaperones for Fabry disease and GM 1 gangliosidosis. Chem. Commun. 48: 6514-6516.   DOI
27 Zhang D, Wang Y, Zhang C, Zheng D, Guo P, Cui Z. 2018. Characterization of a thermophilic lignocellulose-degrading microbial consortium with high extracellular xylanase activity. J. Microbiol. Biotechnol. 28: 305-313.   DOI
28 Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI
29 Ademark P, Larsson M, Tjerneld F, Stalbrand H. 2001. Multiple α-galactosidases from Aspergillus niger: purification, characterization and substrate specificities. Enzyme Microb. Technol. 29: 441-448.   DOI
30 Bruel L, Sulzenbacher G, Cervera Tison M, Pujol A, Nicoletti C, Perrier J, et al. 2011. α-Galactosidase/sucrose kinase (AgaSK), a novel bifunctional enzyme from the human microbiome coupling galactosidase and kinase activities. J. Biol. Chem. 286: 40814-40823.   DOI
31 Jang JM, Yang Y, Wang R, Bao H, Yuan H, Yang J. 2019. Characterization of a high performance α-galactosidase from Irpex lacteus and its usage in removal of raffinose family oligosaccharides from soymilk. Int. J. Biol. Macromol. 131: 1138-1146.   DOI
32 Aliyu H, Lebre P, Blom J, Cowan D, De Maayer P. 2016. Phylogenomic re-assessment of the thermophilic genus Geoobacillus. Syst. Appl. Microbiol. 39: 527-533.   DOI
33 Juturu V, Wu JC. 2013. Insight into microbial hemicellulases other than xylanases: a review. J. Chem. Technol. Biotechnol. 88: 353-363.   DOI
34 Wang C, Dong D, Wang H, Muller K, Qin Y, Wang H, Wu W. 2016. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of actinobacteria in lignocellulose decomposition. Biotechnol. Biofuels 9: 22.   DOI
35 Desiderato JG, Alvarenga DO, Constancio MT, Alves L, Varani AM. 2018. The genome sequence of Dyella jiangningensis FCAV SCS01 from a lignocellulose-decomposing microbial consortium metagenome reveals potential for biotechnological applications. Genet. Mol. Biol. 41: 507-513.   DOI
36 Wang Y, Wang C, Chen Y, Chen B, Guo P, Cui Z. 2021. Metagenomic insight into lignocellulose degradation of the thermophilic microbial consortium TMC7. J. Microbiol. Biotechnol. 31: 1123-1133.   DOI
37 Bhatia S, Singh A, Batra N, Singh J. 2020. Microbial production and biotechnological applications of α-galactosidase. Int. J. Biol. Macromol. 150: 1294-1313.   DOI
38 Lee J, Park I, Cho J. 2013. Immobilization of the Antarctic Bacillus sp. LX-1 alpha-galactosidase on eudragit L-100 for the production of a functional feed additive. Asian-Australas. J. Anim. Sci. 26: 552-557.   DOI
39 Brito IL. 2021. Examining horizontal gene transfer in microbial communities. Nat. Rev. Microbiol. 19: 442-453.   DOI
40 Patil AGG, Kumar SKP, Mulimani VH, Veeranagouda Y, Lee K. 2010. α-galactosidase from Bacillus megaterium VHM1 and its application in removal of flatulence-causing factoers from soymilk. J. Microbiol. Biotechnol. 20: 1546-1554.   DOI
41 Gao H, Li S, Tan Y, Ji S, Wang Y, Bao G, Bao G, Xu L, Gong F. 2013. Application of α-N-acetylgalactosaminidase and α-galactosidase in AB to O red blood cells conversion. Artif. Cells Nanomed. Biotechnol. 41: 32-36.   DOI
42 Huang Y, Zhang H, Ben P, Duan Y, Lu M, Li Z, et al. 2018. Characterization of a novel GH36 α-galactosidase from Bacillus megaterium and its application in degradation of raffinose family oligosaccharides. Int. J. Biol. Macromol. 108: 98-104.   DOI
43 Xie J, Wang B, He Z, Pan L. 2020. A thermophilic fungal GH36 α-galactosidase from Lichtheimia ramosa and its synergistic hydrolysis of locust bean gum. Carbohydr. Res. 491: 107911.   DOI
44 Lee A, Choi KH, Yoon D, Kim S, Cha J. 2017. Characterization of a thermostable glycoside hydrolase family 36 α-galactosidase from Caldicellulosiruptor bescii. J. Biosci. Bioeng. 124: 289-295.   DOI
45 Maruta A, Yamane M, Matsubara M, Suzuki S, Nakazawa M, Ueda M, et al. 2017. A novel α-galactosidase from Fusarium oxysporum and its application in determining the structure of the gum arabic side chain. Enzyme Microb. Technol. 103: 25-33.   DOI