• Title/Summary/Keyword: {\varepsilon}$ 모델

Search Result 326, Processing Time 0.022 seconds

The Numerical Analysis on In-cylinder Flow Fields of an Axisymmetric Engine Using $K-{\varepsilon}-{\tau}$ Turbulence Model ($K-{\varepsilon}-{\tau}$ 난류모델을 이용한 축대칭 엔진 실린더내 유동장의 수치해석)

  • 최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.711-718
    • /
    • 1999
  • Current turbulence models including modified $K-{\varepsilon}-{\tau}$ turbulence model do not predict compression effect on turbulence accurately in an internal combustion engine. The $K-{\varepsilon}-{\tau}$ turbulence model was suggested to improve the predictability of compression effect by We et al. In this paper a numeri-cal study was performed to clarify the applicability of the $K-{\varepsilon}-{\tau}$ turbulenc model to the calculation of the in-cylinder flow of an axisymmetric engine. THe results using $K-{\varepsilon}-{\tau}$ turbulence model are compared to those from the modified $K-{\varepsilon}-{\tau}$ turbulence model and experimental data. The mean veloc-ity and rms velocity profiles using $K-{\varepsilon}-{\tau}$ turbulence model showed a better agreement with an experimental data than those of modifid $K-{\varepsilon}-e$ turbulence model.

  • PDF

Flow Analysis with a Port/Valve Assembly and Cylinder Using a RNG k-$\varepsilon$ Model (RNG k-$\varepsilon$모델을 이용한 포트/밸브계 및 실린더내의 유동해석)

  • 양희천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.436-444
    • /
    • 1998
  • Applicability of the RNG k-$\varepsilon$ model to the analysis of unsteady axisymmetric turbulent flow of a reciprocating engine including port/valve assembly is studied numerically. The governing equations based on non-orthogonal including port/valve assembly is studied numerically. The governing equations based on a non-orthogonal coordinate formulation with Cartesian velocity components are used and discretised by the finite volume method with non-staggered variable arrangements. The predicted results using the RNG k-$\varepsilon$ model of the unsteady axisymmetric turbulent flow within a cylinder of reciprocating model engine including port/valve assembly are compared to these from the modified k-$\varepsilon$ model and experimental data. Using the RNG k-$\varepsilon$ model seems the have some potential for the simulations of the unsteady turbulent flow within a port/valve-cylinder assembly over the modified k-$\varepsilon$model.

  • PDF

Numerical Analysis of Two-Dimensional Surface Buoyant Jets by k-$\varepsilon$ Turbulence Model (이차원 표층방류 밀도분류의 k-$\varepsilon$ 모델에 의한 수치해석)

  • 허재영;최한기;강주복
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.2
    • /
    • pp.81-91
    • /
    • 1991
  • A k-$\varepsilon$ equation model was established to investigate the behaviours of two-dimensional surface buoyant jets. Its computational results were compared with experimental data on the mean flow and the turbulent transport. The model was proved to predict the flow characteristics reasonably. The influence of the values of k and $\varepsilon$ given in the inlet on the evaluation of surface buoyant jets was examined to determine them quantitatively. Computations for several values of buoyancy production coefficient $C\varepsilon$$_3$ in the $\varepsilon$ equation, which has been neglected by many researchers. were carried out to evaluate its effect on the flow development. Computational results of the two-dimensional surface buoyant jets were presented and briefly discussed.

  • PDF

The Effect of Turbulence Model on the Flow Field and the Spray Characteristics (유동장 및 분무특성에 미치는 난류모델의 영향)

  • 양희천;유홍선
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.87-100
    • /
    • 1997
  • The ability of turbulence model to accurately describe the complex characteristics of the flow field and the fuel spray is of great importance in the optimum design of diesel engine. The numerical simulations of the flow field and the spray characteristics within the combustion chamber of direct injection model entgine are performed to examine the applicability of turbulence model. The turbulence models used are the RNG $\varepsilon$ model and the modified $\varepsilon$ model which included the compressibility effect due to the compression/expansion of the charges. In this study, the predicted results in the quiescent condition of direct injection model engine show reasonable trends comparing with the experimental data of spray characteristics, i. e., spray tip penetration, spray tip velocity. The results of eddy viscosity obtained using the $\varepsilon$ model in the spray region is significantly larger than that obtained using the RNG $\varepsilon$ model. The application of the RNG model seems to have some potential for the simulations of the spray characteristics, e. g., spray tip penetration, spray tip velocity, droplets distribution over the $\varepsilon$ model.

  • PDF

Prediction of Turbulent Flows with Separation and Swirl Using the RNG K-$\varepsilon$ Turbulence Model (RNG k-$\varepsilon$ 난류모델을 이용한 유동박리 및 선회를 가지는 난류유동의 예측)

  • 김성구;오군섭;김용모;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.119-129
    • /
    • 1996
  • This study is concerned with the critical evaluation of predicative capability of a k-$\varepsilon$ turbulence model using the Renormalization Group(RNG) theory. The present numerical model for solution of the Navier-Stokes System is based on the modified PISO algorithms. Computations have been performed with the RNG-based K-$\varepsilon$ model for the two-dimensional flow over a backward-facing step, a confined coaxial jet, and a swirling flow in a swirl combustor. Numerical results are compared with experimental data in terms of mean flow velocities, turbulent kinetic energy, and turbulent stresses. Numerical results clearly indicate that the RNG-based K-$\varepsilon$ turbulence model shows a significant improvement over a standard K-$\varepsilon$ model in predicting the turbulent flows with flow separation and swirl.

  • PDF

Numerical Computations of Turbulent Flow in a $90^{\circ}$ Curved Duct Using a Modified Extended $k-\varepsilon$ Turbulence Model (수정된 Extendel $k-\varepsilon$ 난류모델을 사용한 $90^{\circ}$곡관 내의 난류유동에 관한 수치해석적 연구)

  • 정수진;김태훈;조진호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.139-146
    • /
    • 1996
  • An extended $k-\varepsilon$ tuebulence model modified by considering the streamline curvature effect and standard $k-\varepsilon$ turbulence model have been applied for three dimensional analysis of turbulece flow in a $90^{\circ}$ curved duct. By comparision of the results with the experimental data, the modified extended $k-\varepsilon$ model gave closer agreement with experimental data than the results from standard $k-\varepsilon$ model owing to an extra time scale of the production rate and parameter describing effects of streamline curvature included in the dissipation rate equation.

  • PDF

Study on Smoke Prediction in Heavy-duty Diesel Engine (대형 디젤기관에서 매연가스 예측에 관한 연구)

  • Baik, Doo-Sung;Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.865-870
    • /
    • 2008
  • The effects of exhaust gas recirculation (ECR) on smoke emissions in heavy duty diesel engine are numerically studied by using KIVA-3V CFD code. For the analysis, RNG k-$\varepsilon$ turbulence model was given as a governing equation, and mathematical models of Tab, Wave, Watkins-Park, Nagle-Strikland were applied to describe physical process of droplet breakup, atomization, wall impingement and smoke respectively.

Assessment of Turbulence Models for Engine Intake and Compression Flow Analysis (엔진 흡입.압축과정의 유동해석을 위한 난류모델의 평가)

  • Park, Kweon-Ha;Kim, Jae-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1129-1140
    • /
    • 2008
  • Many turbulence models have been developed in order to analyze the flow characteristics in an engine cylinder. Watkins introduced k-${\varepsilon}$ turbulence model for in-cylinder flow, and Reynolds modified turbulence dissipation rate by applying rapid transformation theory, Wu suggested k-${\varepsilon}-{\tau}$ turbulence model in which length scale and time scale are separated to introduce turbulence time scale, and Orszag proposed k-${\varepsilon}$ RNG model. This study applied the models to in-cylinder flow induced by intake valve and piston moving. All models showed similar flow fields during early stage of intake stroke. At the end of compression stroke, ${\kappa}-{\varepsilon}$ Watkins, ${\kappa}-{\varepsilon}$ Reynolds and ${\kappa}-{\varepsilon}$ RNG predicted well second and third vortex, especially ${\kappa}-{\varepsilon}$ RNG produced new forth vortex near central axis at the lower part of cylinder which was not predicted by the other models.

Compressibility Correction Effects of Two-equation Turbulence Models for a Supersonic Through-type Pintle Nozzle with Large Scale Separation Flow (큰 박리유동을 동반한 초음속 관통형 핀틀노즐 유동에 적합한 2-방정식 난류모델의 압축성계수 보정 영향)

  • Heo, Junyoung;Jung, Junyoung;Sung, Hong-Gye;Yang, June-Seo;Lee, Ji-Hyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.61-69
    • /
    • 2013
  • Numerical simulations have been performed for assessment of compressibility correction of two-equation turbulent models suitable for large scale separation flows perturbed by a pintle strokes. Two-equation turbulence models, the low Reynolds k-${\varepsilon}$ and the k-${\omega}$ SST models with or without compressibility correction proposed by Wilcox and Sarkar are evaluated. The detail flow structures are observed and static pressures along nozzle wall are compared with experimental results. Mach disk location and pressure recovery profiles in flow separation region are noticeably distinct between turbulent models of k-${\varepsilon}$ and k-${\omega}$ SST. The compressible effect corrections to those models improve resolving of separation flow behaviors. The compressibility corrections to k-${\varepsilon}$ model have provided very comparable results with test data.

Numerical Simulation of Square Cylinder Near a Wall with the ε -SST Turbulence Model (ε -SST 난류 모델을 적용한 벽면 근처 정사각주 유동장의 수치 해석)

  • Lee,Bo-Seong;Kim,Tae-Yun;Park,Yeong-Hui;Lee,Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.1-7
    • /
    • 2003
  • The numerical simulation of flow-filed around a square cylinder near a wall with $\varepsilon$-SST turbulence model is carried out in this study. The newly suggested $\varepsilon$-SST turbulence model that modifies the original SST turbulence model is proved to yield more accurate results than the other 2-equation turbulence models in large separation region around a bluff body. Therefore, $\varepsilon$-SST turbulence model can be effectively applied for predicting the flow-fields with large separation. And it is found that vortex shedding is suppressed below the critical gap height, the Strouhal number is affected by the gap height and the wall boundary layer thickness.