• 제목/요약/키워드:

검색결과 23,066건 처리시간 0.041초

Simulation on Optimum Doping Levels in Si Solar Cells

  • Choe, Kwang Su
    • 한국재료학회지
    • /
    • 제30권10호
    • /
    • pp.509-514
    • /
    • 2020
  • The two key variables of an Si solar cell, i.e., emitter (n-type window layer) and base (p-type substrate) doping levels or concentrations, are studied using Medici, a 2-dimensional semiconductor device simulation tool. The substrate is p-type and 150 ㎛ thick, the pn junction is 2 ㎛ from the front surface, and the cell is lit on the front surface. The doping concentration ranges from 1 × 1010 cm-3 to 1 × 1020 cm-3 for both emitter and base, resulting in a matrix of 11 by 11 or a total of 121 data points. With respect to increasing donor concentration (Nd) in the emitter, the open-circuit voltage (Voc) is little affected throughout, and the short-circuit current (Isc) is affected only at a very high levels of Nd, exceeding 1 × 1019 cm-3, dropping abruptly by about 12%, i.e., from Isc = 6.05 × 10-9 A·㎛-1, at Nd = 1 × 1019 cm-3 to Isc = 5.35 × 10-9 A·㎛-1 at Nd = 1 × 1020 cm-3, likely due to minority-carrier, or hole, recombination at the very high doping level. With respect to increasing acceptor concentration (Na) in the base, Isc is little affected throughout, but Voc increases steadily, i.e, from Voc = 0.29 V at Na = 1 × 1012 cm-3 to 0.69 V at Na = 1 × 1018 cm-3. On average, with an order increase in Na, Voc increases by about 0.07 V, likely due to narrowing of the depletion layer and lowering of the carrier recombination at the pn junction. At the maximum output power (Pmax), a peak value of 3.25 × 10-2 W·cm-2 or 32.5 mW·cm-2 is observed at the doping combination of Nd = 1 × 1019 cm-3, a level at which Si is degenerate (being metal-like), and Na = 1 × 1017 cm-3, and minimum values of near zero are observed at very low levels of Nd ≤ 1 × 1013 cm-3. This wide variation in Pmax, even within a given kind of solar cell, indicates that selecting an optimal combination of donor and acceptor doping concentrations is likely most important in solar cell engineering.

위조 방지 분야에 응용 가능한 다양한 희토류 이온이 도핑된 SrMoO4 형광체의 제조 및 특성 (Synthesis and Properties of SrMoO4 Phosphors Doped with Various Rare Earth Ions for Anti-Counterfeiting Applications)

  • 문태옥;정재용;조신호
    • 한국재료학회지
    • /
    • 제30권8호
    • /
    • pp.406-412
    • /
    • 2020
  • SrMoO4:RE3+ (RE=Dy, Sm, Tb, Eu, Dy/Sm) phosphors are prepared by co-precipitation method. The effects of the type and the molar ratio of activator ions on the structural, morphological, and optical properties of the phosphor particles are investigated. X-ray diffraction data reveal that all the phosphors have a tetragonal system with a main (112) diffraction peak. The emission spectra of the SrMoO4 phosphors doped with several activator ions indicate different multicolor emissions: strong yellow-emitting light at 573 nm for Dy3+, red light at 643 nm for Sm3+, green light at 545 nm for Tb3+, and reddish orange light at 614 nm for Eu3+ activator ions. The Dy3+ singly-doped SrMoO4 phosphor shows two dominant emission peaks at 479 and 573 nm corresponding to the 4F9/26H15/2 magnetic dipole transition and 4F9/26H13/2 electric dipole transition, respectively. For Dy3+ and Sm3+ doubly-doped SrMoO4 phosphors, two kinds of emission peaks are observed. The two emission peaks at 479 and 573 nm are attributed to 4F9/26H15/2 and 4F9/26H13/2 transitions of Dy3+ and two emission bands centered at 599 and 643 nm are ascribed to 4G5/26H7/2 and 4G5/26H9/2 transitions of Sm3+. As the concentration of Sm3+ increases from 1 to 5 mol%, the intensities of the emission bands of Dy3+ gradually decrease; those of Sm3+ slowly increase and reach maxima at 5 mol% of Sm3+ ions, and then rapidly decrease with increasing molar ratio of Sm3+ ions due to the concentration quenching effect. Fluorescent security inks based on as-prepared phosphors are synthesized and designed to demonstrate an anti-counterfeiting application.

Li+ and Li+I-Li+ ions Solvated by 1,4-dioxane: An ion Mobility Spectrometry-Mass Spectrometry Study

  • Choi, Yunseop;Ji, Inyong;Seo, Jongcheol
    • Mass Spectrometry Letters
    • /
    • 제12권4호
    • /
    • pp.152-158
    • /
    • 2021
  • Electrospray ionization (ESI) and ion mobility spectrometry-mass spectrometry (IMS-MS) were employed to investigate the solvated structures of ionic species in the lithium iodide electrolyte solution in the gas phase. The Li+I-Li+ triple ion and single standalone Li+ ions solvated by 1,4-dioxane were successfully generated and observed by ESI-MS under the influence of dioxane vapor at the inlet region. Under the present experimental condition, (1,4-dioxane)m·Li+ complex ions (m = 1, 2, and 3) and a (1,4-dioxane)·Li+I-Li+ complex ion were observed, which were further examined by IMS to investigate their structures. The presence of multiple structural isomers was confirmed, which accounts for the endothermic conformational transition of 1,4-dioxane from a chair to a boat to achieve bidentate O-donor binding to Li+ and Li+I-Li+. Further structural details critical for the ion-solvent interactions were also examined and discussed with the help of density functional theory calculations.

GROUND STATES OF A COVARIANT SEMIGROUP C-ALGEBRA

  • Jang, Sun Young;Ahn, Jieun
    • 충청수학회지
    • /
    • 제33권3호
    • /
    • pp.339-349
    • /
    • 2020
  • Let P ⋊ ℕx be a semidirect product of an additive semigroup P = {0, 2, 3, ⋯ } by a multiplicative positive natural numbers semigroup ℕx. We consider a covariant semigroup C-algebra 𝓣(P ⋊ ℕx) of the semigroup P ⋊ ℕx. We obtain the condition that a state on 𝓣(P ⋊ ℕx) can be a ground state of the natural C-dynamical system (𝓣(P ⋊ ℕx), ℝ, σ).

Continuous removal of heavy metals by coupling a microbial fuel cell and a microbial electrolytic cell

  • Xie, Guo R.;Choi, Chan S.;Lim, Bong S.;Chu, Shao X.
    • Membrane and Water Treatment
    • /
    • 제11권4호
    • /
    • pp.283-294
    • /
    • 2020
  • This work aims at studying the feasibility of continuous removal of mixed heavy metal ions from simulated zinc plating wastewaters by coupling a microbial fuel cell and a microbial electrolysis cell in batch and continuous modes. The discharging voltage of MFC increased initially from 0.4621 ± 0.0005 V to 0.4864 ± 0.0006 V as the initial concentration of Cr6+ increased from 10 ppm to 60 ppm. Almost complete removal of Cr6+ and low removal of Cu2+ occurred in MFC of the MFC-MEC-coupled system after 8 hours under the batch mode; removal efficiencies (REs) of Cr6+ and Cu2+ were 99.76% and 30.49%. After the same reaction time, REs of nickel and zinc ions were 55.15% and 76.21% in its MEC. Cu2+, Ni2+, and Zn2+ removal efficiencies of 54.98%, 30.63%, 55.04%, and 75.35% were achieved in the effluent within optimum HRT of 2 hours under the continuous mode. The incomplete removal of Cu2+, Ni2+ and Zn2+ ions in the effluent was due to the fact that the Cr6+ was almost completely consumed at the end of MFC reaction. After HRT of 12 hours, at the different sampling locations, Cr6+ and Cu2+ removal efficiencies in the cathodic chamber of MFC were 89.95% and 34.69%, respectively. 94.58%, 33.95%, 56.57%, and 75.76% were achieved for Cr6+, Cu2+, Ni2+ and Zn2+ in the cathodic chamber of MEC. It can be concluded that those metal ions can be removed completely by repeatedly passing high concentration of Cr6+ through the cathode chamber of MFC of the MFC-MEC-coupled system.

제주시 도로변에서의 에어로졸의 입경별 분포 특성 (Roadside Aerosols Size Distribution Characteristics in Jeju City)

  • 이기호;김수미;허철구
    • 한국환경과학회지
    • /
    • 제30권9호
    • /
    • pp.727-739
    • /
    • 2021
  • Measurements on mass size distribution of roadside aerosols were obtained in downtown Jeju City from July 2018 to May 2020 using an 8-stage cascade impactor sampler and the compositions of aerosols were analyzed. The mass size distribution of total aerosols was bimodal with aerosols existing in both the fine and coarse modes. The mass size distributions of Na+, Mg2+, Ca2+, Cl-, NH4+ and SO42- were unimodal, whereas that of K+ was bimodal. For NO3-, the size distribution in winter and spring was bimodal with the peaks in both fine and coarse modes, whereas for summer and autumn the distribution was unimodal with a peak in the coarse mode. NH4+ was found to co-exist with SO42- in the fine mode with an average molar ratio of [NH4+]/[SO42-] equal to 2.05. Good correlation was observed between NO3- and NH4+ in the fine mode particles in spring and winter. Based on the value of the marine enrichment factor for Cl-, Mg2+, K+, Ca2+ and SO42-, it may be inferred that a major part of the roadside aerosols in downtown Jeju City was largely contributed by terrigenous sources, although the influence of sea salt was normally present.

Radiochemical Analysis of Filters Used During the Decommissioning of Research Reactors for Disposal

  • Kyungwon Suh;Jung Bo Yoo;Kwang-Soon Choi;Gi Yong Kim;Simon Oh;Kanghyun Yoo;Kwang Eun Lee;Shinkyoung Lee;Young Sang Lee;Hyeju Lee;Junhyuck Kim;Kyunghun Jung;Sora Choi;Tae-Hong Park
    • 방사성폐기물학회지
    • /
    • 제20권4호
    • /
    • pp.489-500
    • /
    • 2022
  • The decommissioning of nuclear facilities produces various types of radiologically contaminated waste. In addition, dismantlement activities, including cutting, packing, and clean-up at the facility site, result in secondary radioactive waste such as filters, resin, plastic, and clothing. Determining of the radionuclide content of this waste is an important step for the determination of a suitable management strategy including classification and disposal. In this work, we radiochemically characterized the radionuclide activities of filters used during the decommissioning of Korea Research Reactors (KRRs) 1 and 2. The results indicate that the filter samples contained mainly 3H (500-3,600 Bq·g-1), 14C (7.5-29 Bq·g-1), 55Fe (1.1- 7.1 Bq·g-1), 59Ni (0.60-1.0 Bq·g-1), 60Co (0.74-70 Bq·g-1), 63Ni (0.60-94 Bq·g-1), 90Sr (0.25-5.0 Bq·g-1), 137Cs (0.64-8.7 Bq·g-1), and 152Eu (0.19-2.9) Bq·g-1. In addition, the gross alpha radioactivity of the samples was measured to be between 0.32-1.1 Bq·g-1. The radionuclide concentrations were below the concentration limit stated in the low- and intermediatelevel waste acceptance criteria of the Nuclear Safety and Security Commission, and used for the disposal of the KRRs waste drums to a repository site.

산림 소유역 생태계에서 질소와 황의 유입량, 유출량과 물질수지 (Input, Output and Budget of Nitrogen and Sulphur in Forested Watershed Ecosystems)

  • 유영한;김준호;문형태;이창석
    • The Korean Journal of Ecology
    • /
    • 제25권2호
    • /
    • pp.119-125
    • /
    • 2002
  • 생태계의 필수원소이고 대기오염의 주물질인 질소와 황의 유입량, 유출량과 연물질 수지를 밝히기 위하여 집수역의 특성이 알려지고, 수문학 연구시설이 구비된 산림청 임업연구원중부시험장내 관릉 시험림의 침엽수림과 활엽수림 소유역 생태계에서 강수량과 유출수량을 측정하고, 이 속에 있는 두 물질의 함량을 분석하고 이를 수문학적 자료와 통합하였다. 광릉의 연평균 강수량은 12,916 ton·ha/sup -1/·yr/sup -1/이었고, 연평균 유출량은 각각 5,094(39%)와 7,467 ton·ha/sup -1/·yr/sup -1/(59%)로서 침엽수림이 활엽수림보다 더 낮았다. 강수에 의한 N(NO₃/sup -/+NH₄/sup +/)와 SO/sup 2-/₄의 연평균 유입량은 각각 12.50과 81.72kg·ha/sup -1/·yr/sup -1/이었다. 유출수를 통하여 생태계로부터 유출되는 N(NO₃/sup -/+NH₄/sup +/)와 SO/sup 2+/₄의 유출량은 침엽수림소유역에서 각각 0.06과 39.23 kg·ha/sup -1/·yr/sup -1/이었고, 활엽수림소유역에서 각각 0.15, 55.46kg·ha/sup -1/·yr/sup -1/로서 질소와 황은 생산성이 높은 천이초기 단계에 있는 침엽수림이 극상단계에 있는 활엽수림 소유역보다 적었는데 이는 물질생산에 의하여 이들 물질이 생물체의 조직에 축적되었음을 시사하였다. 이 결과로부터 계산한 N(NO₃/sup -/+NH₄/sup +/)와 SO/sup 2-/₄의 연수지는 침엽수림소유역에서 각각 +12.46, +42.49kg·ha/sup -1/·yr/sup -1/, 활엽수림소유역에서 각각 -11.35, +26.26 kg·ha/sup -1/·yr/sup -1/로서 두 생태계에 축적되었다.

Chemical characteristics of wet precipitation in urban and mountainous sites of Jeju Island

  • Bu, Jun-Oh;Song, Jung-Min;Park, Sook-Young;Kang, Hee-Ju;Kang, Chang-Hee
    • 분석과학
    • /
    • 제33권1호
    • /
    • pp.33-41
    • /
    • 2020
  • Wet precipitation samples were collected in Jeju City and Mt. Halla-1100 site (a site at an altitude of 1100 m on Mt. Halla) during 2011-2013, and their major ionic species were analyzed to examine the chemical composition and characteristics. A comparison of ion balance, electric conductivity, and acid fraction of precipitation revealed correlation coefficients in the range of r = 0.950~0.991, thereby implying the high quality of analytical data. Volume-weighted mean pH and electric conductivity corresponded to 4.86 and 25.5 µS/cm for Jeju City, and 4.98 and 15.1 µS/cm for Mt. Halla-1100 site, respectively. Ionic strengths of the wet precipitation in Jeju City and Mt. Halla-1100 site corresponded 0.3 ± 0.5 and 0.2 ± 0.2 mM, respectively, thereby indicating that more than 30 % of total precipitation was within a pure precipitation criteria. The precipitation with a pH range of 4.5 - 5.0 corresponded to 40.8 % in Jeju City, while the precipitation with a pH range of 5.0 - 5.5 corresponded to 56.9 % in Mt. Halla-1100 site, thereby indicating slightly more weak acidity than that in Jeju city. The volume-weighted mean concentration (µeq/L) of ionic species was in the order of Na+ > Cl- > nss-SO42- > NO3- > Mg2+ > NH4+ > H+ > nss-Ca2+ > PO43- > K+ > CH3COO- > HCOO- > NO2- > F- > HCO3- > CH3SO3- at Jeju City area, while it corresponded to Na+ > Cl- > nss-SO42- > NO3- > NH4+ > H+ > Mg2+ > nss-Ca2+ > PO43- > CH3COO- > K+ > HCOO- > NO2- > F- > HCO3- > CH3SO3- at Mt. Halla-1100 site. The compositions of sea salts (Na+, Cl-, Mg2+) and secondary pollutants (NH4+, nss-SO42-, NO3-) corresponded to 66.1 % and 21.8 %, respectively, in Jeju City and, 49.9 % and 31.5 %, respectively, in Mt. Halla-1100 site. The acidity contributions in Jeju City and Mt. Halla-1100 site by inorganic acids, i.e., sulfuric acid and nitric acid, corresponded to 93.9 % and 91.4 %, respectively, and the acidity contributions by organic acids corresponded to 6.1 % and 8.6 %, respectively. The neutralization factors in Jeju City and Mt. Halla1100 site by ammonia corresponded to 29.8 % and 30.1 %, respectively, whereas the neutralization factors by calcium carbonate corresponded to 20.5 % and 25.2 %, respectively. From the clustered back trajectory analysis, the concentrations of most ionic components were higher when the airflow pathways were moved from the continent to Jeju area.

Analysis of activated colloidal crud in advanced and modular reactor under pump coastdown with kinetic corrosion

  • Khurram Mehboob;Yahya A. Al-Zahrani
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4571-4584
    • /
    • 2022
  • The analysis of rapid flow transients in Reactor Coolant Pumps (RCP) is essential for a reactor safety study. An accurate and precise analysis of the RCP coastdown is necessary for the reactor design. The coastdown of RCP affects the coolant temperature and the colloidal crud in the primary coolant. A realistic and kinetic model has been used to investigate the behavior of activated colloidal crud in the primary coolant and steam generator that solves the pump speed analytically. The analytic solution of the non-dimensional flow rate has been determined by the energy ratio β. The kinetic energy of the coolant fluid and the kinetic energy stored in the rotating parts of a pump are two essential parameters in the form of β. Under normal operation, the pump's speed and moment of inertia are constant. However, in a coastdown situation, kinetic damping in the interval has been implemented. A dynamic model ACCP-SMART has been developed for System Integrated Modular and Advanced Reactor (SMART) to investigate the corrosion due to activated colloidal crud. The Fickian diffusion model has been implemented as the reference corrosion model for the constituent component of the primary loop of the SMART reactor. The activated colloidal crud activity in the primary coolant and steam generator of the SMART reactor has been studied for different equilibrium corrosion rates, linear increase in corrosion rate, and dynamic RCP coastdown situation energy ratio b. The coolant specific activity of SMART reactor equilibrium corrosion (4.0 mg s-1) has been found 9.63×10-3 µCi cm-3, 3.53×10-3 µC cm-3, 2.39×10-2 µC cm-3, 8.10×10-3 µC cm-3, 6.77× 10-3 µC cm-3, 4.95×10-4 µC cm-3, 1.19×10-3 µC cm-3, and 7.87×10-4 µC cm-3 for 24Na, 54Mn, 56Mn, 59Fe, 58Co, 60Co, 99Mo, and 51Cr which are 14.95%, 5.48%, 37.08%, 12.57%, 10.51%, 0.77%, 18.50%, and 0.12% respectively. For linear and exponential coastdown with a constant corrosion rate, the total coolant and steam generator activity approaches a higher saturation value than the normal values. The coolant and steam generator activity changes considerably with kinetic corrosion rate, equilibrium corrosion, growth of corrosion rate (ΔC/Δt), and RCP coastdown situations. The effect of the RCP coastdown on the specific activity of the steam generators is smeared by linearly rising corrosion rates, equilibrium corrosion, and rapid coasting down of the RCP. However, the time taken to reach the saturation activity is also influenced by the slope of corrosion rate, coastdown situation, equilibrium corrosion rate, and energy ratio β.