Browse > Article
http://dx.doi.org/10.5478/MSL.2021.12.4.152

Li+ and Li+I-Li+ ions Solvated by 1,4-dioxane: An ion Mobility Spectrometry-Mass Spectrometry Study  

Choi, Yunseop (Department of Chemistry, Pohang University of Science and Technology (POSTECH))
Ji, Inyong (Department of Chemistry, Pohang University of Science and Technology (POSTECH))
Seo, Jongcheol (Department of Chemistry, Pohang University of Science and Technology (POSTECH))
Publication Information
Mass Spectrometry Letters / v.12, no.4, 2021 , pp. 152-158 More about this Journal
Abstract
Electrospray ionization (ESI) and ion mobility spectrometry-mass spectrometry (IMS-MS) were employed to investigate the solvated structures of ionic species in the lithium iodide electrolyte solution in the gas phase. The Li+I-Li+ triple ion and single standalone Li+ ions solvated by 1,4-dioxane were successfully generated and observed by ESI-MS under the influence of dioxane vapor at the inlet region. Under the present experimental condition, (1,4-dioxane)m·Li+ complex ions (m = 1, 2, and 3) and a (1,4-dioxane)·Li+I-Li+ complex ion were observed, which were further examined by IMS to investigate their structures. The presence of multiple structural isomers was confirmed, which accounts for the endothermic conformational transition of 1,4-dioxane from a chair to a boat to achieve bidentate O-donor binding to Li+ and Li+I-Li+. Further structural details critical for the ion-solvent interactions were also examined and discussed with the help of density functional theory calculations.
Keywords
triple ion; ion solvation; lithium electrolyte; ion mobility spectrometry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Friedman, H. L. Annu. Rev. Phys. Chem. 1981, 32, 179, DOI: 10.1146/annurev.pc.32.100181.001143.   DOI
2 Jarek, R. L.; Shin, S. K. J. Am. Chem. Soc. 1997, 119, 10501, DOI: 10.1021/ja971841h.   DOI
3 Ohtani, H.; Hirao, Y.; Ito, A.; Tanaka, K.; Hatozaki, O. J. Therm. Anal. Calorim. 2010, 99, 139, DOI: 10.1007/s10973-009-0520-7.   DOI
4 Petersen, G.; Jacobsson, P.; Torell, L. M. Electrochim. Acta 1992, 37, 1495, DOI: 10.1016/0013-4686(92)80097-6.   DOI
5 Ziegler, M. J.; Madura, J. D. J. Solution Chem. 2011, 40, 1383, DOI: 10.1007/s10953-011-9732-0.   DOI
6 Ahonen, L.; Li, C.; Kubecka, J.; Iyer, S.; Vehkamaki, H.; Petaja, T.; Kulmala, M.; Hogan Jr, C. J. J. Phys. Chem. Lett. 2019, 10, 1935, DOI: 10.1021/acs.jpclett.9b00453.   DOI
7 Ouyang, H.; Larriba-Andaluz, C.; Oberreit, D. R.; Hogan, C. J. J. Am. Soc. Mass Spectrom. 2013, 24, 1833, DOI:10.1007/s13361-013-0724-8.   DOI
8 Wei, Z.; Li, Y.; Cooks, R. G.; Yan, X. Annu. Rev. Phys. Chem. 2020, 71, 31, DOI: 10.1146/annurev-physchem-121319-110654.   DOI
9 Xu, K. Chem. Rev. 2004, 104, 4303, DOI: 10.1021/cr030203g.   DOI
10 Hyun, J.-K.; Dong, H.; Rhodes, C. P.; Frech, R.; Wheeler, R. A. J. Phys. Chem. B 2001, 105, 3329, DOI: 10.1021/jp003591o.   DOI
11 Jarek, R.; Denson, S. C.; Shin, S. K. J. Chem. Phys. 1998, 109, 4258, DOI: 10.1063/1.477031.   DOI
12 Jarek, R. L.; Miles, T. D.; Trester, M. L.; Denson, S. C.; Shin, S. K. J. Phys. Chem. A 2000, 104, 2230, DOI:10.1021/jp9908193.   DOI
13 Khartabil, H. K.; Gros, P. C.; Fort, Y.; Ruiz-Lopez, M. F. J. Org. Chem. 2008, 73, 9393, DOI: 10.1021/jo8019434.   DOI
14 Tretyakov, D. O.; Prisiazhnyi, V. D.; Gafurov, M. M.; Rabadanov, K. S.; Kirillov, S. A. J. Chem. Eng. Data 2010, 55, 1958, DOI: 10.1021/je9009249.   DOI
15 Calabrese, V.; Lavanant, H.; Rosu, F.; Gabelica, V.; Afonso, C. J. Am. Soc. Mass Spectrom. 2020, 31, 969, DOI: 10.1021/jasms.0c00034.   DOI
16 Rovelli, G.; Jacobs, M. I.; Willis, M. D.; Rapf, R. J.; Prophet, A. M.; Wilson, K. R. Chem. Sci. 2020, 11, 13026, DOI: 10.1039/d0sc04611f.   DOI
17 Mochizuki, S.; Wakisaka, A. J. Phys. Chem. A 2002, 106, 5095, DOI: 10.1021/jp014583q.   DOI
18 Mason, E. A.; McDaniel, E. W., Transport Properties of Ions in Gases. Wiley: 1988, DOI: 10.1002/3527602852.
19 Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057, DOI: 10.1039/b515623h.   DOI
20 Rossky, P. J.; Dudowicz, J. B.; Tembe, B. L.; Friedman, H. L. J. Chem. Phys. 1980, 73, 3372, DOI: 10.1063/1.440533.   DOI
21 Pritchard, B. P.; Altarawy, D.; Didier, B.; Gibson, T. D.; Windus, T. L. J. Chem. Inf. Model. 2019, 59, 4814, DOI:10.1021/acs.jcim.9b00725.   DOI
22 Ritchie, J. P.; Bachrach, S. M. J. Comput. Chem. 1987, 8, 499, DOI: 10.1002/jcc.540080430.   DOI
23 Coots, J.; Gandhi, V.; Onakoya, T.; Chen, X.; Larriba-Andaluz, C. J. Aerosol Sci. 2020, 147, 105570, DOI:10.1016/j.jaerosci.2020.105570.   DOI
24 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Jr., J. A. M.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J., Gaussian 09, Revision A.02. Gaussian, Inc.: Wallingford CT, 2016.
25 Mesleh, M. F.; Hunter, J. M.; Shvartsburg, A. A.; Schatz, G. C.; Jarrold, M. F. J. Phys. Chem. 1996, 100, 16082, DOI: 10.1021/jp961623v.   DOI