Browse > Article
http://dx.doi.org/10.5322/JESI.2021.30.9.727

Roadside Aerosols Size Distribution Characteristics in Jeju City  

Lee, Ki-Ho (Department of Environmental Engineering, Jeju National University)
Kim, Su-Mi (Air Environmental Division, Jeju Special Self-Governing Province Research Institute of Health & Environment)
Hu, Chul-Goo (Department of Environmental Engineering, Jeju National University)
Publication Information
Journal of Environmental Science International / v.30, no.9, 2021 , pp. 727-739 More about this Journal
Abstract
Measurements on mass size distribution of roadside aerosols were obtained in downtown Jeju City from July 2018 to May 2020 using an 8-stage cascade impactor sampler and the compositions of aerosols were analyzed. The mass size distribution of total aerosols was bimodal with aerosols existing in both the fine and coarse modes. The mass size distributions of Na+, Mg2+, Ca2+, Cl-, NH4+ and SO42- were unimodal, whereas that of K+ was bimodal. For NO3-, the size distribution in winter and spring was bimodal with the peaks in both fine and coarse modes, whereas for summer and autumn the distribution was unimodal with a peak in the coarse mode. NH4+ was found to co-exist with SO42- in the fine mode with an average molar ratio of [NH4+]/[SO42-] equal to 2.05. Good correlation was observed between NO3- and NH4+ in the fine mode particles in spring and winter. Based on the value of the marine enrichment factor for Cl-, Mg2+, K+, Ca2+ and SO42-, it may be inferred that a major part of the roadside aerosols in downtown Jeju City was largely contributed by terrigenous sources, although the influence of sea salt was normally present.
Keywords
Roadside aerosol; Mass size distribution; Chemical composition; MMAD; Jeju;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ohsaki, S., Mitani, R., Fujiwara, S., Nakamura, H., Watano, S., 2019, Effect of particle-wall interaction and particle shape on particle deposition behavior in human respiratory system, Chem. Pharm. Bull., 67, 1328-1336.   DOI
2 Seinfeld, J. H., Pandis, S. N., 2006, Atmospheric chemistry and physics: From air pollution to climate change, 2nd ed., John Wiley & Sons, New Jersey, 368-384.
3 Shields, L. G., Suess, D. T., Prather, K. A., 2007, Determination of single particle mass spectral signatures from heavy-duty diesel vehicle emissions for PM2.5 source apportionment, Atmos. Environ., 41, 3841-3852.   DOI
4 Pey, J., Querol, X., Alastuey, A., Rodriguez, S., Putaud, J. P., Van Dingenen, R., 2009, Source apportionment of urban fine and ultra-fine particle number concentration in a Western Mediterranean city, Atmos. Environ., 43, 4407-4415.   DOI
5 Frohlich, R., Cubison, M. J., Slowik, J. G., Bukowiecki, N., Canonaco, F., Croteau, P. L., Gysel, M., Henne, S., Herrmann, E., Jayne, J. T., Steinbacher, M., Worsnop, D. R., Baltensperger, U., Prevot, A. S. H., 2015, Fourteen months of on-line measurements of the non-refractory submicron aerosol at the Jungfraujoch (3580 ma.s.l.) - chemical composition, origins and organic aerosol sources, Atmos. Chem. Phys., 15, 11373-11398.   DOI
6 UN, 2018, World Urbanization Prospects, https://esa.un.org/unpd/wup/Download/.
7 Yoo, E. C., Dou, W. G.,Cho, J. G., 2009, Study for the control of re-suspended dust from paved poad, The Annual Report of Busan Metropolitan City Institute of Health and Environment, 19, 177-186.
8 Shekunov, B. Y., Chattopadhyay, P., Tong, H. H .Y., Chow, A. H. L., 2007, Particle size analysis in pharmaceutics: principles, methods and applications, Pharmaceutical Research, 24, 203-227.   DOI
9 Parmar, R. S., Satsangi, G. S., Kumari, M., Lakhani, A., Srivastava, S. S., Prakash, S., 2001, Study of size distribution of atmospheric aerosol at Agra, Atmos. Environ., 35, 693-702.   DOI
10 Calvo, A. I., Alves, C., Castro, A., Pont, V., Vicente, A. M., Fraile, R., 2013, Research on aerosol sources and chemical composition: Past, current and emerging issues, Atmos. Res., 120-121, 1-28.   DOI
11 Cho, B. Y., Shin, S. H., Jung, C. S., Ju, M. H., Yoon, M. H., Ahn, J. E. Bae, G. S., 2019, Characteristics of particle size distribution at the roadside of Daegu. J. Korean Soc. Atmos. Environ., 35, 16-26.   DOI
12 Duan, J., Li, X., Tan, J., Chai, F., 2009, Size distribution and source apportionment of atmospheric particle number concentration in winter in Beijing, Res. Environ. Sci., 22, 1134-1140.
13 Ha, H. J., 2011, Comparative evaluation of the air quality at the center lane and roadside in the exclusive median bus lane, Ph. D. Dissertation, University of Seoul, Seoul, Republic of Korea.
14 Han, X., Naeher, L. P., 2006, A Review of traffic-related air pollution exposure assessment studies in the developing world, Environmental International, 32, 106-120.   DOI
15 Hu, C. H., Kim, S. M., Lee, K. H., 2020, Composition of size-segregated atmospheric aerosol collected at an urban roadside environment in Jeju area, J. Environ. Sci. Int., 29, 79-93.   DOI
16 Wrobel, A., Rokita, E., Maenhaut, W., 2000, Transport of traffic-related aerosols in urban areas, Sci. Total Environ., 257, 199-211.   DOI
17 Jiang, F., Liu, F., Lin, Q., Fu, Y., Yang, Y., Peng, L., Lian, X., Z hang, G., Bi, X., Wang, X., Sheng, G., 2019, Characteristics and formation mechanisms of sulfate and nitrate in size-segregated atmospheric particles from Urban Guangzhou, China, Aerosol Air Qual. Res., 19, 1284-1293.   DOI
18 Lee, K. H., Yang, H. J., Hu, C. G., 2003, Size distribution of ambient aerosol measured at a coastal site in Jeju island, J. Environ. Sci. Int., 12, 1043-1054.   DOI
19 Gao, Y., Arimoto, R., Duce, R. A., Chen, L. Q., Zhou, M. Y., Gu, D. Y., 1996, Atmospheric non-sea-salt sulfate, nitrate and methnsulfonate over the China Sea, J. Geophys. Rese., 101, 12601-12611.   DOI
20 Tai, A. P. K., Mickley, L. J., Jacob, D. J., 2010, Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change, Atmos. Environ., 44, 3976-3984.   DOI
21 Wolff, G. T., Ruthkosky, M. S., Stroup, D. R., Korsog, P. E., Ferman, M. A., Wendel, G. R., Stedman, D. H., 1986, Measurement of SOx, NOx, and aerosol species on Bermuda, Atmos. Environ., 20, 1229-1239.   DOI
22 Zavala, M., Herndon, S. C., Wood, E. C., Onasch, T. B., Knighton, W. B., Marr, L. C., Kolb, C. E., Molina, L. T., 2009, Evaluation of mobile emissions contributions to Mexico City's emissions inventory using on-road and cross-road emission measurements and ambient data, Atmos. Chem. Phys., 9, 6305-6317.   DOI
23 Zhuang, H., Chan, C. K., Fang, M., Wexler, A. S., 1999, Size distributions of particulate sulfate, nitrate, and ammonium at a coastal site in Hong Kong, Atmos. Environ., 33, 843-853.   DOI
24 MOLIT (Ministry of Land, Instructure and Transport), 2019, 2018 Statistics of urban planning; http://upis.go.kr/upispweb/statsmgmt/viewListdown.do.
25 Hu, H., Lia, T., Chen, X., 2017, The concentration distribution of exposures to particulate air pollution on different road sections, Transportation Research Procedia, 25, 3343-3353.   DOI
26 Karagulian, F., Belis, C. A., Dora, C., F., C., Pruss-Ustun, A. M., Bonjour, S., Adair-Rohani, H., Amann, M., 2015, Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level, Atmos. Environ., 120, 475-483.   DOI
27 Kim, Y .P., Bae, G. N., Ji, J. H., Jin, H. C., Moon, K. C., 1999, Aerosol size distribution and composition at Kosan, Cheju island: measurements in April 1998, J. Korean Soc. Atmos. Environ., 15, 677-685.