• Title/Summary/Keyword: *-prime ring and *-ideal

Search Result 157, Processing Time 0.023 seconds

FUZZY MULTIPLICATION RINGS

  • Lee, Dong-Soo;Park, Chul-Hwan;Kim, Jong-Heon
    • East Asian mathematical journal
    • /
    • v.21 no.2
    • /
    • pp.183-190
    • /
    • 2005
  • We will introduce the notion of fuzzy multiplication ring using fuzzy ideal. In this paper we will show that a fuzzy ideal I is primary if radI is prime. And we will investigate some properties related the theorem.

  • PDF

RINGS WITH A RIGHT DUO FACTOR RING BY AN IDEAL CONTAINED IN THE CENTER

  • Cheon, Jeoung Soo;Kwak, Tai Keun;Lee, Yang;Piao, Zhelin;Yun, Sang Jo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.529-545
    • /
    • 2022
  • This article concerns a ring property that arises from combining one-sided duo factor rings and centers. A ring R is called right CIFD if R/I is right duo by some proper ideal I of R such that I is contained in the center of R. We first see that this property is seated between right duo and right π-duo, and not left-right symmetric. We prove, for a right CIFD ring R, that W(R) coincides with the set of all nilpotent elements of R; that R/P is a right duo domain for every minimal prime ideal P of R; that R/W(R) is strongly right bounded; and that every prime ideal of R is maximal if and only if R/W(R) is strongly regular, where W(R) is the Wedderburn radical of R. It is also proved that a ring R is commutative if and only if D3(R) is right CIFD, where D3(R) is the ring of 3 by 3 upper triangular matrices over R whose diagonals are equal. Furthermore, we show that the right CIFD property does not pass to polynomial rings, and that the polynomial ring over a ring R is right CIFD if and only if R/I is commutative by a proper ideal I of R contained in the center of R.

PRIME IDEALS OF SUBRINGS OF MATRIX RINGS

  • Chun, Jang-Ho;Park, Jung-Won
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.211-217
    • /
    • 2004
  • In a ring $R_n(K,\;J)$ where K is a commutative ring with identity and J is an ideal of K, all prime ideals of $R_n(K,\;J)$ are of the form either $M_n(P)\;o;R_n(P,\;P\;{\cap}\;J)$. Therefore there is a one to one correspondence between prime ideals of K not containing J and prime ideals of $R_n(K,\;J)$.

NOTES ON GENERALIZED DERIVATIONS ON LIE IDEALS IN PRIME RINGS

  • Dhara, Basudeb;Filippis, Vincenzo De
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.599-605
    • /
    • 2009
  • Let R be a prime ring, H a generalized derivation of R and L a noncommutative Lie ideal of R. Suppose that $u^sH(u)u^t$ = 0 for all u $\in$ L, where s $\geq$ 0, t $\geq$ 0 are fixed integers. Then H(x) = 0 for all x $\in$ R unless char R = 2 and R satisfies $S_4$, the standard identity in four variables.

ON WEAKLY S-PRIME SUBMODULES

  • Hani A., Khashan;Ece Yetkin, Celikel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1387-1408
    • /
    • 2022
  • Let R be a commutative ring with a non-zero identity, S be a multiplicatively closed subset of R and M be a unital R-module. In this paper, we define a submodule N of M with (N :R M)∩S = ∅ to be weakly S-prime if there exists s ∈ S such that whenever a ∈ R and m ∈ M with 0 ≠ am ∈ N, then either sa ∈ (N :R M) or sm ∈ N. Many properties, examples and characterizations of weakly S-prime submodules are introduced, especially in multiplication modules. Moreover, we investigate the behavior of this structure under module homomorphisms, localizations, quotient modules, cartesian product and idealizations. Finally, we define two kinds of submodules of the amalgamation module along an ideal and investigate conditions under which they are weakly S-prime.

SOME RESULTS ON GENERALIZED LIE IDEALS WITH DERIVATION

  • Aydin, Neset;Kaya, Kazim;Golbasi, Oznur
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.225-232
    • /
    • 2001
  • Let R be a prime ring with characteristic not two. U a (${\sigma},{\tau}$)-left Lie ideal of R and d : R$\rightarrow$R a non-zero derivation. The purpose of this paper is to invesitigate identities satisfied on prime rings. We prove the following results: (1) [d(R),a]=0$\Leftrightarrow$d([R,a])=0. (2) if $(R,a)_{{\sigma},{\tau}}$=0 then $a{\in}Z$. (3) if $(R,a)_{{\sigma},{\tau}}{\subset}C_{{\sigma},{\tau}}$ then $a{\in}Z$. (4) if $(U,a){\subset}Z$ then $a^2{\in}Z\;or\;{\sigma}(u)+{\tau}(u){\in}Z$, for all $u{\in}U$. (5) if $(U,R)_{{\sigma},{\tau}}{\subset}C_{{\sigma},{\tau}}$ then $U{\subset}Z$.

  • PDF

Posner's First Theorem for *-ideals in Prime Rings with Involution

  • Ashraf, Mohammad;Siddeeque, Mohammad Aslam
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.343-347
    • /
    • 2016
  • Posner's first theorem states that if R is a prime ring of characteristic different from two, $d_1$ and $d_2$ are derivations on R such that the iterate $d_1d_2$ is also a derivation of R, then at least one of $d_1$, $d_2$ is zero. In the present paper we extend this result to *-prime rings of characteristic different from two.

TOPOLOGICAL CONDITIONS OF NI NEAR-RINGS

  • Dheena, P.;Jenila, C.
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.669-677
    • /
    • 2013
  • In this paper we introduce the notion of NI near-rings similar to the notion introduced in rings. We give topological properties of collection of strongly prime ideals in NI near-rings. We have shown that if N is a NI and weakly pm near-ring, then $Max(N)$ is a compact Hausdorff space. We have also shown that if N is a NI near-ring, then for every $a{\in}N$, $cl(D(a))=V(N^*(N)_a)=Supp(a)=SSpec(N){\setminus}int\;V(a)$.

SYMMETRIC BI-DERIVATIONS IN PRIME RINGS

  • Jung, Yong-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.819-826
    • /
    • 1998
  • The purpose of this paper is to prove the following results; (1) Let R be a prime ring of char $(R)\neq 2$ and I a nonzero left ideal of R. The existence of a nonzero symmetric bi-derivation D : $R\timesR\;\longrightarrow\;$ such that d is sew-commuting on I where d is the trace of D forces R to be commutative (2) Let m and n be integers with $m\;\neq\;0.\;or\;n\neq\;0$. Let R be a noncommutative prime ring of char$ (R))\neq \; 2-1\; p_1 \;n_1$ where p is a prime number which is a divisor of m, and I a nonzero two-sided ideal of R. Let $D_1$ ; $R\;\times\;R\;\longrightarrow\;and\;$ $D_2\;:\;R\;\times\;R\;longrightarrow\;R$ be symmetric bi-derivations. Suppose further that there exists a symmetric bi-additive mapping B ; $R\;\times\;R\;\longrightarrow\;and\;$ such that $md_1(\chi)\chi + n\chi d_2(\chi)=f(\chi$) holds for all $\chi$$\in$I, where $d_1 \;and\; d_2$ are the traces of $D_1 \;and\; D_2$ respectively and f is the trace of B. Then we have $D_1=0 \;and\; D_2=0$.