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GENERALIZED DERIVATIONS WITH ANNIHILATOR

CONDITIONS IN PRIME RINGS

Yu Wang

Abstract. Let R be a prime ring, H a generalized derivation of R, L a
noncentral Lie ideal of R, and 0 ̸= a ∈ R. Suppose that ausH(u)ut = 0
for all u ∈ L, where s, t ≥ 0 are fixed integers. Then H = 0 unless R

satisfies S4, the standard identity in four variables.

Throughout this article, R is always a prime ring with extended centended
C, right Utumi quotient ring U , and two-sided Martindale quotient ring Q.
The definitions and properties of these objects can be found in [3, Chapter 2].
By S4 we denote the standard identity in four variables.

By a generalized derivation on R one usually means an additive map H :
R→ R such thatH(xy) = H(x)y+xd(y) for some derivation d of R. Obviously
any derivation is a generalized derivation. Another basic example of generalized
derivations is the following: H(x) = ax + xb for a, b ∈ R. In [12] Hvala
initiated the study of generalized derivations on prime rings. In [16, Theorem
3] Lee proved the following essential result: every generalized derivation H on
a dense left ideal of R can be uniquely extended to U and assume the form
H(x) = bx + d(x) for some b ∈ U and a derivation d on U . In recent years,
a number of articles discussed generalized derivations in the context of prime
and semiprime rings (e.g., [1, 9, 10, 11, 17, 18, 20]).

In [6] Dhara and Sharma proved that, if a ∈ R such that ausd(u)nut = 0
for all u ∈ L, a noncommutative Lie ideal of R, where d a derivation of R,
s ≥ 0, t ≥ 0, n ≥ 1 are fixed integers, then either a = 0 or d = 0 unless charR =
2 and R satisfies S4. In [5] Dhara and Filippis proved that, if usH(u)ut = 0
for all u ∈ L, where L is a noncommutative Lie ideal of R, H is a generalized
derivation of R, and s, t ≥ 0 are fixed integers, then H(x) = 0 for all x ∈ R
unless charR = 2 and R satisfies S4.
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In the present paper we shall extend the result of Dhara and Filippis to the
situation when ausH(u)ut = 0 for all u ∈ L, where a ∈ R, L a noncentral Lie
ideal of R, H a generalized derivation of R and s, t ≥ 0 are fixed integers. More
precisely, our main result is the following:

Theorem 1. Let R be a prime ring, H a generalized derivation of R, L a
noncentral Lie ideal of R, and 0 ̸= a ∈ R. Suppose that ausH(u)ut = 0 for all
u ∈ L, where s, t ≥ 0 are fixed integers. Then H = 0 unless R satisfies S4, the
standard identity in four variables.

The following example illustrates the necessity of conditions in Theorem 1.

Example 1. Let R = M2(F ), the ring of all 2 × 2 matrices algebra over a
field F (R satisfies S4). Let H : R → R such that H(x) = e22x for all x ∈ R.
Note that H is a nonzero generalized derivation of R. It is well-known fact
that [x, y]2 ∈ F · I2 for all x, y ∈ R. Since every element in [R,R] is a single
commutator [2, Theorem], we see that u2 ∈ F · I2 for all u ∈ [R,R]. So,
e11u

2H(u) = 0 for all u ∈ [R,R].

For the proof of the main result we begin with the following simple result.

Lemma 1. Let R be a prime ring with extended centroid C and a, b, c ∈ R
with a ̸= 0. If a[x1, x2]

s(b[x1, x2] + [x1, x2]c)[x1, x2]
t = 0 for all x1, x2 ∈ R,

then either R satisfies a nontrivial generalized polynomial identity (GPI) or
b+ c = 0.

Proof. Suppose that b ̸∈ C. We have that

a[X1, X2]
s(b[X1, X2] + [X1, X2]c)[X1, X2]

t

is a nonzero GPI for R as it has a nonzero monomial a(X1X2)
sb(X1X2)

t+1.
Similarly, if c ̸∈ C, we also know that R is a nontrivial GPI ring. Now we
assume that b, c ∈ C. Then

a[x1, x2]
s+t+1(b+ c) = 0

for all x1, x2 ∈ R. If b + c ̸= 0, it is obvious that a[X1, X2]
s+t+1(b + c) is a

nonzero GPI for R. This proves the lemma. □
The following result is crucial to the proof of our main result.

Lemma 2. Let R = Mm(F ), the ring of m ×m matrices algebra over a field
F with m > 2 and 0 ̸= a ∈ R and b, c ∈ R such that

a[x1, x2]
s(b[x1, x2] + [x1, x2]c)[x1, x2]

t = 0

for all x1, x2 ∈ R, where s, t ≥ 0 are fixed integers. Then b+ c = 0.

Proof. Let φ be an inner F -automorphism of R. Since

aφ[x1, x2]
s(bφ[x1, x2] + [x1, x2]c

φ)[x1, x2]
t = 0

for all x1, x2 ∈ R, we may replace a, b, and c by aφ, bφ, and cφ respectively,
to prove that bφ + cφ = 0. Let a =

∑m
i,j=1 aijeij where aij ∈ F . Multiplying
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a by some suitable ekj from the left-hand side, we may assume a = ekk +∑m
s=k+1 akseks. Let φi be the inner F -automorphism of R defined by xφi =

(1+akieki)x(1−akieki) for k+1 ≤ i ≤ m. Then aφk+1 = ekk+
∑m
s=k+2 akseks,

aφk+1φk+2 = ekk +
∑m
s=k+3 akseks, . . . , a

φk+1φk+2···φm = ekk. Replacing a, b,
c by aφk+1φk+2···φm , bφk+1φk+2···φm , cφk+1φk+2···φm , respectively, we may write
a = ekk.

Now putting x1 = eki, x2 = eik for i ̸= k, we have

0 = ekk[eki, eik]
s(b[eki, eik] + [eki, eik]c)[eki, eik]

t

= ekk(ekk + (−1)seii)(b(ekk − eii) + (ekk − eii)c)(ekk + (−1)teii)

= ekk(b+ c)ekk + (−1)tekk(−b+ c)eii

implying (b+ c)kk = 0. Next putting x1 = eki, x2 = eik + eij for 1 ≤ i, j ≤ m
such that k, i, j are mutually different, we have

0 = ekk[eki, eik + eij ]
s(b[eki, eik + eij ] + [eki, eik + eij ]c)[eki, eik + eij ]

t

= (ekk + ekj)b(ekk + ekj + (−1)t+1eii) + (ekk + ekj)c(ekk + ekj + (−1)teii).

Right multiplying by ekk, we get that (ekk + ekj)(b + c)ekk = 0, this implies
(b+ c)kk + (b+ c)jk = 0. Since (b+ c)kk = 0, we obtain that (b+ c)jk = 0 for
all 1 ≤ j ≤ m.

Let ψ be the F -automorphism of R defined by xψ = (1 + eik)x(1− eik) for
all x ∈ R, where i ̸= k. Then

eψkk[x1, x2]
s(bψ[x1, x2] + [x1, x2]c

ψ)[x1, x2]
t = 0

for all x1, x2 ∈ R. Since eψkk = ekk + eik, left multiplying by ekk, we get

ekk[x1, x2]
s(bψ[x1, x2] + [x1, x2]c

ψ)[x1, x2]
t = 0

for all x1, x2 ∈ R. As above we can obtain that (b+ c)ψjk = 0 for all j.
On the other hand, we have

(b+ c)ψ = b+ c+ eik(b+ c)− (b+ c)eik − eik(b+ c)eik

= b+ c+
∑
q

(b+ c)kqeiq −
∑
p

(b+ c)piepk − (b+ c)kieik.

This implies that (b+ c)ψjk = (b+ c)jk − (b+ c)ji for j ̸= i and

(b+ c)ψik = (b+ c)ik + (b+ c)kk − (b+ c)ii − (b+ c)ki.

Since (b + c)jk = (b + c)ψjk = 0 for all j, we see that (b + c)ji = 0 for all i, j,
that is, b+ c = 0. This proves the result. □

Applying the above two results we can obtain the following:

Lemma 3. Let R be a prime ring with extended centroid C and a, b, c ∈ R
with a ̸= 0. If a[x1, x2]

s(b[x1, x2] + [x1, x2]c)[x1, x2]
t = 0 for all x1, x2 ∈ R,

then b+ c = 0 unless dimCRC ≤ 4.



920 YU WANG

Proof. We assume that dimCRC > 4. Our goal is to show b + c = 0. By
assumption R satisfies generalized polynomial identity

f(x1, x2) = a[x1, x2]
s(b[x1, x2] + [x1, x2]c)[x1, x2]

t.

Suppose on the contrary that b+ c ̸= 0. In view of Lemma 1 we see that R is a
nonzero GPI ring. Since R and U satisfy same generalized polynomial identity
(see [4]), U satisfies f(x1, x2). In case C is infinite, we have f(x1, x2) = 0
for all x1, x2 ∈ U ⊗C C, where C is the algebraic closure of C. Since both
U and U ⊗C C are prime and centrally closed [7], we may replace R by U
or U ⊗C C according to C finite or infinite. Thus we may assume that R is
centrally closed over C (i.e., RC = R) which is either finite or algebraically
closed and f(x1, x2) = 0 for all x1, x2 ∈ R. By Martindale’s theorem [19], R is
a primitive ring having nonzero socle H with C as the associated division ring.
By Jacobson’s density theorem [13, p. 75], R is isomorphic to a dense ring of
linear transformations of a vector space V over C, and H consists of the linear
transformations in R of finite rank.

If dimCV < ∞, then R ∼= Mm(C) for some m > 2. By Lemma 2 we have
b + c = 0, a contradiction. Now we assume that dimCV = ∞. It is clear that
there exist h1, h2 ∈ H such that h1a ̸= 0 and bh2 + ch2 ̸= 0. Left multiplying
f(x1, x2) by h1 we may assume that a ∈ H. By Litoff’s theorem [8], there
exists idempotent e ∈ H such that h2, a, bh2, ch2 ∈ eRe and eRe ∼= Mk(C)
with k > 2. Hence

eae[ex1e, ex2e]
s(ebe[ex1e, ex2e] + [ex1e, ex2e]ece)[ex1e, ex2e]

t = 0

for all x1, x2 ∈ R. Since eae = a ̸= 0, by Lemma 2 we have ebe+ece = 0. Thus

bh2 + ch2 = e(bh2)e+ e(ch2)e = ebeh2 + eceh2 = (ebe+ ece)h2 = 0,

a contradiction. □

We are ready to give:

Proof of Theorem 1. We assume that R does not satisfy S4. Our aim is to show
H = 0. By a theorem of Lanski and Montgomery [15, Theorem 13] we have
0 ̸= [I,R] ⊆ L, where I is a nonzero ideal of R. Hence we may assume without
loss of generality that L = [I, I]. Since I and U satisfy the same differential
identities [4], we have

a[x1, x2]
sH([x1, x2])[x1, x2]

t = 0

for all x1, x2 ∈ U . By [16, Theorem 3] we may assume that H(x) = bx+ d(x)
for all x ∈ U , where b ∈ U and d is a derivation of U . So

a[x1, x2]
s(b[x1, x2] + d([x1, x2]))[x1, x2]

t = 0

for all x1, x2 ∈ U . Assume first that d is Q-inner, i.e., there exists p ∈ U such
that d(x) = [p, x] for all x ∈ U . Thus

a[x1, x2]
s((b+ p)[x1, x2]− [x1, x2]p)[x1, x2]

t = 0
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for all x1, x2 ∈ U . By Lemma 3 we have b = (b+ p)− p = 0 and so

a[x1, x2]
sd([x1, x2])[x1, x2]

t = 0

for all x1, x2 ∈ U . It follows from [6, Theorem 1] that d = 0 and so H = 0 as
desired.

Suppose that d is not Q-inner. Then

a[x1, x2]
s(b[x1, x2] + [d(x1), x2] + [x1, d(x2)])[x1, x2]

t = 0

for all x1, x2 ∈ U . In view of the powerful Kharchenko’s theorem [14] we have

a[x1, x2]
s(b[x1, x2] + [x3, x2] + [x1, x4])[x1, x2]

t = 0

for all x1, x2, x3, x4 ∈ U . Thus, U satisfies its blended component

a[x1, x2]
s([x3, x2] + [x1, x4])[x1, x2]

t.

In particular, we have

a[x1, x2]
sd([x1, x2])[x1, x2]

t = a[x1, x2]
s([d(x1), x2] + [x1, d(x2)])[x1, x2]

t = 0

for all x1, x2 ∈ U . It follows from [6, Theorem 1] that d = 0, a contradiction.
□

We conclude this paper with the following.

Conjecture. Let R be a prime ring, 0 ̸= a ∈ R, H a generalized derivation
and L a noncentral Lie ideal of R. Suppose that ausH(u)nut = 0 for all u ∈ L,
where s, t ≥ 0 and n ≥ 1 are fixed integers. Then H = 0 unless R satisfies S4,
the standard identity in four variables.
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