• Title/Summary/Keyword: *-paranormal

Search Result 29, Processing Time 0.022 seconds

Conditions on Operators Satisfying Weyl's Theorem

  • Kim, An-Hyun
    • Honam Mathematical Journal
    • /
    • v.25 no.1
    • /
    • pp.75-82
    • /
    • 2003
  • In this note it is shown that if T satisfies ($G_{1}$)-condition with finite spectrum then Weyl's theorem holds for T. If T is totally *-paranormal then $T-{\lambda}$ has finite ascent for all ${\lambda}{\in}{\mathbb{C}},\;T$ is isoloid, and Weyl's theorem holds for T.

  • PDF

A NOTE ON ∗-PARANORMAL OPERATORS AND RELATED CLASSES OF OPERATORS

  • Tanahashi, Kotoro;Uchiyama, Atsushi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.357-371
    • /
    • 2014
  • We shall show that the Riesz idempotent $E_{\lambda}$ of every *-paranormal operator T on a complex Hilbert space H with respect to each isolated point ${\lambda}$ of its spectrum ${\sigma}(T)$ is self-adjoint and satisfies $E_{\lambda}\mathcal{H}=ker(T-{\lambda})= ker(T-{\lambda})^*$. Moreover, Weyl's theorem holds for *-paranormal operators and more general for operators T satisfying the norm condition $||Tx||^n{\leq}||T^nx||\,||x||^{n-1}$ for all $x{\in}\mathcal{H}$. Finally, for this more general class of operators we find a sufficient condition such that $E_{\lambda}\mathcal{H}=ker(T-{\lambda})= ker(T-{\lambda})^*$ holds.

Finite Operators and Weyl Type Theorems for Quasi-*-n-Paranormal Operators

  • ZUO, FEI;YAN, WEI
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.885-892
    • /
    • 2015
  • In this paper, we mainly obtain the following assertions: (1) If T is a quasi-*-n-paranormal operator, then T is finite and simply polaroid. (2) If T or $T^*$ is a quasi-*-n-paranormal operator, then Weyl's theorem holds for f(T), where f is an analytic function on ${\sigma}(T)$ and is not constant on each connected component of the open set U containing ${\sigma}(T)$. (3) If E is the Riesz idempotent for a nonzero isolated point ${\lambda}$ of the spectrum of a quasi-*-n-paranormal operator, then E is self-adjoint and $EH=N(T-{\lambda})=N(T-{\lambda})^*$.

PARANORMAL CONTRACTIONS AND INVARIANT SUBSPACES

  • Duggal, B.P.;Kubrusly, C.S.;Levan, N.
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.6
    • /
    • pp.933-942
    • /
    • 2003
  • It is shown that if a paranormal contraction T has no nontrivial invariant subspace, then it is a proper contraction. Moreover, the nonnegative operator Q = T/sup 2*/T/sup 2/ - 2T/sup */T + I also is a proper contraction. If a quasihyponormal contraction has no nontrivial invariant subspace then, in addition, its defect operator D is a proper contraction and its itself-commutator is a trace-class strict contraction. Furthermore, if one of Q or D is compact, then so is the other, and Q and D are strict ontraction.

CONTRACTIONS OF CLASS Q AND INVARIANT SUBSPACES

  • DUGGAL, B.P.;KUBRUSLY, C.S.;LEVAN, N.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.169-177
    • /
    • 2005
  • A Hilbert Space operator T is of class Q if $T^2{\ast}T^2-2T{\ast}T + I$ is nonnegative. Every paranormal operator is of class Q, but class-Q operators are not necessarily normaloid. It is shown that if a class-Q contraction T has no nontrivial invariant subspace, then it is a proper contraction. Moreover, the nonnegative operator Q = $T^2{\ast}T^2-2T{\ast}T + I$ also is a proper contraction.

SOME WEAK HYPONORMAL CLASSES OF WEIGHTED COMPOSITION OPERATORS

  • Jabbarzadeh, Mohammad R.;Azimi, Mohammad R.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.793-803
    • /
    • 2010
  • In this note, we discuss measure theoretic characterizations for weighted composition operators in some operator classes on $L^2(\cal{F})$ such as, p-quasihyponormal, p-paranormal, p-hyponormal and weakly hyponormal. Some examples are then presented to illustrate that weighted composition operators lie between these classes.

Generalized Weyl's Theorem for Some Classes of Operators

  • Mecheri, Salah
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.553-563
    • /
    • 2006
  • Let A be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of A is the set ${\sigma}_{B{\omega}}(A)$ of all ${\lambda}{\in}\mathbb{C}$ such that $A-{\lambda}I$ is not a B-Fredholm operator of index 0. Let E(A) be the set of all isolated eigenvalues of A. Recently in [6] Berkani showed that if A is a hyponormal operator, then A satisfies generalized Weyl's theorem ${\sigma}_{B{\omega}}(A)={\sigma}(A)$\E(A), and the B-Weyl spectrum ${\sigma}_{B{\omega}}(A)$ of A satisfies the spectral mapping theorem. In [51], H. Weyl proved that weyl's theorem holds for hermitian operators. Weyl's theorem has been extended from hermitian operators to hyponormal and Toeplitz operators [12], and to several classes of operators including semi-normal operators ([9], [10]). Recently W. Y. Lee [35] showed that Weyl's theorem holds for algebraically hyponormal operators. R. Curto and Y. M. Han [14] have extended Lee's results to algebraically paranormal operators. In [19] the authors showed that Weyl's theorem holds for algebraically p-hyponormal operators. As Berkani has shown in [5], if the generalized Weyl's theorem holds for A, then so does Weyl's theorem. In this paper all the above results are generalized by proving that generalizedWeyl's theorem holds for the case where A is an algebraically ($p,\;k$)-quasihyponormal or an algebarically paranormal operator which includes all the above mentioned operators.

  • PDF