• Title/Summary/Keyword: *-algebra

Search Result 1,782, Processing Time 0.025 seconds

A Study on Possibility of Teaching Complex Numbers from Geometric Aspect (기하학적 측면에서 복소수의 지도가능성 고찰)

  • Lee, Dong-Hwan
    • Journal of Educational Research in Mathematics
    • /
    • v.18 no.1
    • /
    • pp.51-62
    • /
    • 2008
  • In the 7th-curriculum, only basic arithmetics of complex numbers have been taught. They are taught formally like literal manipulations. This paper analyzes mathematically essential relations between algebra of complex numbers and plane geometry. Historical analysis is also performed to find effective methods of teaching complex numbers in school mathematics. As a result, we can integrates this analysis with school mathematics by help of Viete's operations on right triangles. We conclude that teaching geometric interpretation of complex numbers is possible in school mathematics.

  • PDF

The Analysis of Metacognitive Activity Through Writing Using CAS Calculator on Middle School Mathematics Underachiever (중학교 수학학습부진아의 CAS 계산기를 사용한 활동에서 나타나는 메타인지 활동 분석)

  • Kim, In-Kyung
    • School Mathematics
    • /
    • v.12 no.4
    • /
    • pp.531-545
    • /
    • 2010
  • This research is focusing on find out the learning method for mathematics underachievers of middle school. The tested method were metacognitive activity through writing. For conducting research, I had selected mathematics underachievers of middle school. After selecting them, I made two group. One group studied using CAS calculator with paper and pencil. And another group studied using paper and pencil only. Both groups exhibited metacognitive learning activities. The analysis of result shows that the group with CAS calculator did better than the group of paper and pencil.

  • PDF

Design and Implementation of a Sequential Polynomial Basis Multiplier over GF(2m)

  • Mathe, Sudha Ellison;Boppana, Lakshmi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2680-2700
    • /
    • 2017
  • Finite field arithmetic over GF($2^m$) is used in a variety of applications such as cryptography, coding theory, computer algebra. It is mainly used in various cryptographic algorithms such as the Elliptic Curve Cryptography (ECC), Advanced Encryption Standard (AES), Twofish etc. The multiplication in a finite field is considered as highly complex and resource consuming operation in such applications. Many algorithms and architectures are proposed in the literature to obtain efficient multiplication operation in both hardware and software. In this paper, a modified serial multiplication algorithm with interleaved modular reduction is proposed, which allows for an efficient realization of a sequential polynomial basis multiplier. The proposed sequential multiplier supports multiplication of any two arbitrary finite field elements over GF($2^m$) for generic irreducible polynomials, therefore made versatile. Estimation of area and time complexities of the proposed sequential multiplier is performed and comparison with existing sequential multipliers is presented. The proposed sequential multiplier achieves 50% reduction in area-delay product over the best of existing sequential multipliers for m = 163, indicating an efficient design in terms of both area and delay. The Application Specific Integrated Circuit (ASIC) and the Field Programmable Gate Array (FPGA) implementation results indicate a significantly less power-delay and area-delay products of the proposed sequential multiplier over existing multipliers.

An Analysis on secondary school students' problem-solving ability and problem-solving process through algebraic reasoning (중고등학생의 대수적 추론 문제해결능력과 문제해결과정 분석)

  • Kim, Seong Kyeong;Hyun, Eun Jung;Kim, Ji Yeon
    • East Asian mathematical journal
    • /
    • v.31 no.2
    • /
    • pp.145-165
    • /
    • 2015
  • The purpose of this study is to suggest how to go about teaching and learning secondary school algebra by analyzing problem-solving ability and problem-solving process through algebraic reasoning. In doing this, 393 students' data were thoroughly analyzed after setting up the exam questions and analytic standards. As with the test conducted with technical school students, the students scored low achievement in the algebraic reasoning test and even worse the majority tried to answer the questions by substituting arbitrary numbers. The students with high problem-solving abilities tended to utilize conceptual strategies as well as procedural strategies, whereas those with low problem-solving abilities were more keen on utilizing procedural strategies. All the subject groups mentioned above frequently utilized equations in solving the questions, and when that utilization failed they were left with the unanswered questions. When solving algebraic reasoning questions, students need to be guided to utilize both strategies based on the questions.

Asymmetric Multiple-Image Encryption Based on Octonion Fresnel Transform and Sine Logistic Modulation Map

  • Li, Jianzhong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.341-357
    • /
    • 2016
  • A novel asymmetric multiple-image encryption method using an octonion Fresnel transform (OFST) and a two-dimensional Sine Logistic modulation map (2D-SLMM) is presented. First, a new multiple-image information processing tool termed the octonion Fresneltransform is proposed, and then an efficient method to calculate the OFST of an octonion matrix is developed. Subsequently this tool is applied to process multiple plaintext images, which are represented by octonion algebra, holistically in a vector manner. The complex amplitude, formed from the components of the OFST-transformed original images and modulated by a random phase mask (RPM), is used to derive the ciphertext image by employing an amplitude- and phase-truncation approach in the Fresnel domain. To avoid sending whole RPMs to the receiver side for decryption, a random phase mask generation method based on SLMM, in which only the initial parameters of the chaotic function are needed to generate the RPMs, is designed. To enhance security, the ciphertext and two decryption keys produced in the encryption procedure are permuted by the proposed SLMM-based scrambling method. Numerical simulations have been carried out to demonstrate the proposed scheme's validity, high security, and high resistance to various attacks.

A Study On The Adaptive Equalizer Of Coefficient Adjustment In Mobile Communication Systems (이동 통신 시스템에서 조정 계수를 이용한 적응 등화기에 관한 연구)

  • 전상규;김노환
    • Journal of the Korea Society of Computer and Information
    • /
    • v.1 no.1
    • /
    • pp.53-64
    • /
    • 1996
  • The methods for designing the adaptive filter performing DSP(digital signal processing)functions In mobile communication systems are Least-squares algorithm. Fast-Kalman and adaptive lattice algorithm. Least-squares algorithm It fast convergence algorithm for signal Processor of adaptive equallizer and used for eliminating inter symbol Interference which occur inmultiple path fading channel In mobille communication systems. In this paper. we propose the method of control adjustably algebra characteristics of signal vector that is sampling at some of new data sequence and confirm the improvement of fast convergence and iterative performance speed compared to existing algorithms by computer simulation.

  • PDF

Using Mathematics Education(Integration Method) through Computer (컴퓨터를 이용한 수학 교육(적분 방법)에 대한 연구)

  • Jun, Sang-Pyo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.1
    • /
    • pp.213-218
    • /
    • 2008
  • Through the development of computer and multimedia, many different kinds of theories about instructional method are presented. Especially, many lectures in associated with E-learning are done. In mathematics teaching, mathematica-algebra system lecturing, computer and Maple Matlab lecturing etc, are accomplished. There are many controversies among educators in problems originated by computer teaching. In this paper, we going to make a research about problems which are caused by mathematics computer-based education and present a desirable way of computer based education through studying comprehension rate and application ability among learner who uses omputer learning and other learner who uses exiting blackboard-based learning with statistical analysis after sampling test

  • PDF

A Study on Feature-Based Multi-Resolution Modelling - Part I: Effective Zones of Features (특징형상기반 다중해상도 모델링에 관한 연구 - Part I: 특징형상의 유효영역)

  • Lee K.Y.;Lee S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.6
    • /
    • pp.432-443
    • /
    • 2005
  • Recent three-dimensional feature-based CAD systems based on solid or non-manifold modelling functionality have been widely used for product design in manufacturing companies. When product models associated with features are used in various downstream applications such as analysis, however, simplified and abstracted models at various levels of detail (LODs) are frequently more desirable and useful than the full detailed model. To provide multi-resolution models, the features need to be rearranged according to a criterion that measures the significance of the feature. However, if the features are rearranged, the resulting shape is possibly different from the original because union and subtraction Boolean operations are not commutative. To solve this problem, in this paper, the new concept of the effective zone of a feature is defined and identified using Boolean algebra. By introducing the effective zone, an arbitrary rearrangement of features becomes possible and arbitrary LOD criteria may be selected to suit various applications. Besides, because the effective zone of a feature is independent of the data structure of the model, the multi-resolution modelling algorithm based on the effective zone can be implemented on any 3D CAD system based on conventional solid representations as well as non-manifold topological (NMT) representations.

An Analytical Evaluation of 2D Mesh-connected SIMD Architecture for Parallel Matrix Multiplication (2D Mesh SIMD 구조에서의 병렬 행렬 곱셈의 수치적 성능 분석)

  • Kim, Cheong-Ghil
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • Matrix multiplication is a fundamental operation of linear algebra and arises in many areas of science and engineering. This paper introduces an efficient parallel matrix multiplication scheme on N ${\times}$ N mesh-connected SIMD array processor, called multiple hierarchical SIMD architecture (HMSA). The architectural characteristic of HMSA is the hierarchically structured control units which consist of a global control unit, N local control units configured diagonally, and $N^2$ processing elements (PEs) arranged in an N ${\times}$ N array. PEs are communicating through local buses connecting four adjacent neighbor PEs in mesh-torus networks and global buses running across the rows and columns called horizontal buses and vertical buses, respectively. This architecture enables HMSA to have the features of diagonally indexed concurrent broadcast and the accessibility to either rows (row control mode) or columns (column control mode) of 2D array PEs alternately. An algorithmic mapping method is used for performance evaluation by mapping matrix multiplication on the proposed architecture. The asymptotic time complexities of them are evaluated and the result shows that paralle matrix multiplication on HMSA can provide significant performance improvement.

  • PDF

New GPU computing algorithm for wind load uncertainty analysis on high-rise systems

  • Wei, Cui;Luca, Caracoglia
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.461-487
    • /
    • 2015
  • In recent years, the Graphics Processing Unit (GPU) has become a competitive computing technology in comparison with the standard Central Processing Unit (CPU) technology due to reduced unit cost, energy and computing time. This paper describes the derivation and implementation of GPU-based algorithms for the analysis of wind loading uncertainty on high-rise systems, in line with the research field of probability-based wind engineering. The study begins by presenting an application of the GPU technology to basic linear algebra problems to demonstrate advantages and limitations. Subsequently, Monte-Carlo integration and synthetic generation of wind turbulence are examined. Finally, the GPU architecture is used for the dynamic analysis of three high-rise structural systems under uncertain wind loads. In the first example the fragility analysis of a single degree-of-freedom structure is illustrated. Since fragility analysis employs sampling-based Monte Carlo simulation, it is feasible to distribute the evaluation of different random parameters among different GPU threads and to compute the results in parallel. In the second case the fragility analysis is carried out on a continuum structure, i.e., a tall building, in which double integration is required to evaluate the generalized turbulent wind load and the dynamic response in the frequency domain. The third example examines the computation of the generalized coupled wind load and response on a tall building in both along-wind and cross-wind directions. It is concluded that the GPU can perform computational tasks on average 10 times faster than the CPU.