• Title/Summary/Keyword: *-algebra

Search Result 1,782, Processing Time 0.022 seconds

Fuzzy Subalgebras of Type (α, β) in BCK/BCI-Algebras

  • Jun, Young Bae
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.403-410
    • /
    • 2007
  • Using the belongs to relation (${\in}$) and quasi-coincidence with relation (q) between fuzzy points and fuzzy sets, the concept of (${\alpha}$, ${\beta}$)-fuzzy subalgebras where ${\alpha}$ and ${\beta}$ areany two of {${\in}$, q, ${\in}{\vee}q$, ${\in}{\wedge}q$} with ${\alpha}{\neq}{\in}{\wedge}q$ was already introduced, and related properties were investigated (see [3]). In this paper, we give a condition for an (${\in}$, ${\in}{\vee}q$)-fuzzy subalgebra to be an (${\in}$, ${\in}$)-fuzzy subalgebra. We provide characterizations of an (${\in}$, ${\in}{\vee}q$)-fuzzy subalgebra. We show that a proper (${\in}$, ${\in}$)-fuzzy subalgebra $\mathfrak{A}$ of X with additional conditions can be expressed as the union of two proper non-equivalent (${\in}$, ${\in}$)-fuzzy subalgebras of X. We also prove that if $\mathfrak{A}$ is a proper (${\in}$, ${\in}{\vee}q$)-fuzzy subalgebra of a CK/BCI-algebra X such that #($\mathfrak{A}(x){\mid}\mathfrak{A}(x)$ < 0.5} ${\geq}2$, then there exist two prope non-equivalent (${\in}$, ${\in}{\vee}q$)-fuzzy subalgebras of X such that $\mathfrak{A}$ can be expressed as the union of them.

  • PDF

A Hybrid Approach on Matrix Multiplication

  • Tolentino Maribel;Kim Myung-Kyu;Chae Soo-Hoan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.400-402
    • /
    • 2006
  • Matrix multiplication is an important problem in linear algebra. its main significance for combinatorial algorithms is its equivalence to a variety of other problems, such as transitive closure and reduction, solving linear systems, and matrix inversion. Thus the development of high-performance matrix multiplication implies faster algorithms for all of these problems. In this paper. we present a quantitative comparison of the theoretical and empirical performance of key matrix multiplication algorithms and use our analysis to develop a faster algorithm. We propose a Hybrid approach on Winograd's and Strassen's algorithms that improves the performance and discuss the performance of the hybrid Winograd-Strassen algorithm. Since Strassen's algorithm is based on a $2{\times}2$ matrix multiplication it makes the implementation very slow for larger matrix because of its recursive nature. Though we cannot get the theoretical threshold value of Strassen's algorithm, so we determine the threshold to optimize the use of Strassen's algorithm in nodes through various experiments and provided a summary shown in a table and graphs.

  • PDF

A Study on Extended Z for the Concurrency Specification (병행성 명세를 위한 확장된 Z의 연구)

  • Nam, Seong-Uk;Cho, Young-Suck
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10a
    • /
    • pp.575-578
    • /
    • 2000
  • 소프트웨어 개발 초기 단계에서의 부정확에 기인한 에러들을 줄이기 위한 노력이나 기술이 절실하다. [1][2] 정형 명세 기법은 명세 단계에서 기인하는 에러들을 줄이기 위해 Z 나 VDM 과 같은 정형 표기법(formal notation)에 의해 쓰여지며, 정형성(formality)과 추상화(abstraction)의 제공 등 두 가지 사항에 대한 요구사항을 충족시켜 준다. [3][4] 그러나, Z 표기법의 병행성 표현 능력의 부족으로 병행성을 요구하는 시스템의 명세에서 사용할 수 없거나, Process Algebra의 CSP (Communicating Sequence Processes)등과 같은 다른 정형 언어와 함께 명세해야 하는 단점이 있다. 본 논문은 이를 보완하기 위해 범용 목적의 명세 언어인 기존의 Z 를 확장하여 병행성을 명세 가능하도록 하고자 한다. 이를 위해서 병행 프로세스(concurrent process) 개념을 도입하며, 이를 나타내는 표기를 정의하고 사용한다. 또한, 병행성의 제어를 위해서 프로시듀어 기술부(procedure description)의 도입 및 관련 스키마(schema)들을 정의한다. 아울러, 확장된 Z 로 작성된 명세서를 목적 언어로 자동 변환(translate)하기 위한 변환기(translator)를 Lex 와 Yacc을 이용하여 구현하고, 변환된 목적 언어 파일을 실행하여 확장된 Z 가 모호성을 포함하지 않는지 시뮬레이션을 통해 검증한다.

  • PDF

Optimization of Max-Plus based Neural Networks using Genetic Algorithms (유전 알고리즘을 이용한 Max-Plus 기반의 뉴럴 네트워크 최적화)

  • Han, Chang-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.1
    • /
    • pp.57-61
    • /
    • 2013
  • A hybrid genetic algorithm based learning method for the morphological neural networks (MNN) is proposed. The morphological neural networks are based on max-plus algebra, therefore, it is difficult to optimize the coefficients of MNN by the learning method with derivative operations. In order to solve the difficulty, a hybrid genetic algorithm based learning method to optimize the coefficients of MNN is used. Through the image compression/reconstruction experiment using test images extracted from standard image database(SIDBA), it is confirmed that the quality of the reconstructed images obtained by the proposed method is better than that obtained by the conventional neural networks.

Development of an Effective Method for Extracting Eigenvalues of Arbitrarily Shaped Acoustic Cavities (임의 형상 음향 공동의 효율적인 고유치 해석 기법 개발)

  • Kang, S.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.124-129
    • /
    • 2011
  • An improved NDIF method is introduced to efficiently extract eigenvalues of two-dimensional, arbitrarily shaped acoustic cavities. The NDIF method, which was developed by the authors for the eigen-mode analysis of arbitrarily shaped acoustic cavities, membranes, and plates, has the feature that it yields highly accurate eigenvalues compared with other analytical methods or numerical methods (FEM and BEM). However, the NDIF method has the weak point that the system matrix of the NDIF method depends on the frequency parameter and, as a result, a final system equation doesn't take the form of an algebra eigenvalue problem. The system matrix of the improved NDIF method developed in the paper is independent of the frequency parameter and eigenvalues can be efficiently obtained by solving a typical algebraic eigenvalue problem. Finally, the validity and accuracy of the proposed method is verified in two case studies, which indicate that eigenvalues and mode shapes obtained by the proposed method are very accurate compared to the exact method, the NDIF method or FEM(ANSYS).

  • PDF

Development of an Improved NDIF Method for Efficiently Extracting Eigenvalues and Eigenmodes of Arbitrarily Shaped Acoustic Cavities (임의 형상 음향 공동의 효율적인 고유치 및 고유모드 추출을 위한 개선된 NDIF법 개발)

  • Kang, S.W.;Yon, J.I.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.960-966
    • /
    • 2011
  • An improved NDIF method is introduced to efficiently extract eigenvalues and eigenmodes of two-dimensional, arbitrarily shaped acoustic cavities. The NDIF method, which was developed by the authors for the eigen-mode analysis of arbitrarily shaped acoustic cavities, membranes, and plates, has the feature that it yields highly accurate eigenvalues compared with other analytical methods or numerical methods(FEM and BEM). However, the NDIF method has the weak point that the system matrix of the NDIF method depends on the frequency parameter and, as a result, a final system equation doesn's take the form of an algebra eigenvalue problem. The system matrix of the improved NDIF method developed in the paper is independent of the frequency parameter and eigenvalues and mode shapes can be efficiently obtained by solving a typical algebraic eigenvalue problem. Finally, the validity and accuracy of the proposed method is verified in two case studies, which indicate that eigenvalues and mode shapes obtained by the proposed method are very accurate compared to the exact method, the NDIF method or FEM(ANSYS).

Harriot's algebraic symbol and the roots of equation (Harriot(1560-1621) 의 대수기호와 방정식의 근)

  • Shin, Kyung-Hee
    • Journal for History of Mathematics
    • /
    • v.25 no.1
    • /
    • pp.15-27
    • /
    • 2012
  • Thomas Harriot(1560-1621) introduced a simplified notation for algebra. His fundamental research on the theory of equations was far ahead of that time. He invented certain symbols which are used today. Harriot treated all answers to solve equations equally whether positive or negative, real or imaginary. He did outstanding work on the solution of equations, recognizing negative roots and complex roots in a way that makes his solutions look like a present day solution. Since he published no mathematical work in his lifetime, his achievements were not recognized in mathematical history and mathematics education. In this paper, by comparing his works with Viete and Descartes those are mathematicians in the same age, I show his achievements in mathematics.

A Study of the Mathematical Representation in using Computer (컴퓨터를 이용한 수학적 표현에 관한 연구)

  • 류희찬;조완영
    • Journal of Educational Research in Mathematics
    • /
    • v.8 no.2
    • /
    • pp.651-662
    • /
    • 1998
  • Mathematics is means for making sense of one's experiential world and products of human activities. A usefulness of mathematics is derived from this features of mathematics. Keeping the meaning of situations during the mathematizing of situations. However, theories about the development of mathematical concepts have turned mainly to an understanding of invariants. The purpose of this study is to show the possibility of computer in representing situation and phenomena. First, we consider situated cognition theory for looking for the relation between various representation and situation in problem. The mathematical concepts or model involves situations, invariants, representations. Thus, we should involve the meaning of situations and translations among various representations in the process of mathematization. Second, we show how the process of computational mathematization can serve as window on relating situations and representations, among various representations. When using computer software such as ALGEBRA ANIMATION in mathematics classrooms, we identified two benifits First, computer software can reduce the cognitive burden for understanding the translation among various mathematical representations. Further, computer softwares is able to connect mathematical representations and concepts to directly situations or phenomena. We propose the case study for the effect of computer software on practical mathematics classrooms.

  • PDF

A Note on the Relationship between IMTs and the Prototype Design of Computer Applications in the School Mathematics (수학 교수-학습을 위한 컴퓨터 응용 프로그램 모형설계에 따른 대화형 실행매체(IMTs)의 작성에 관한 소고)

  • 허만성;박용범;김부윤
    • Journal of Educational Research in Mathematics
    • /
    • v.9 no.1
    • /
    • pp.321-332
    • /
    • 1999
  • This article made overtures of the relationship between interactive mathematics texts nd the prototype design of computer application with Computer Algebra System Math. Engine, linking together in the school mathematics. School teachers and researchers would try to construct mathematical materials with computers in educating students in the middle and high school grades. As the individual users come to manage hyper-media materials, so they meet with the problem of 'Who does control?'A mass user would be concerned with interactive mathematics materials directly or off-line at realtime and manipulate the process of problem-solving symbolically with MathView/sup 11)/ and ON-Math/sup 12)/. Discussion was made in developing the factor in the domestic situation and reaching out their hands for it. In conclusion, a user may reform the information of math-curriculum limitedly.

  • PDF

A study on the comparison of contents in mathematics curriculums - focused on Korea, California in USA England, Japan- (수학과 교육과정에서의 내용 비교 연구 - 우리나라, 미국의 캘리포니아주, 영국, 일본을 중심으로 -)

  • 나귀수;황혜정;임재훈
    • Journal of Educational Research in Mathematics
    • /
    • v.13 no.3
    • /
    • pp.403-428
    • /
    • 2003
  • This study intends to compare the mathematics contents included in the mathematics curriculum of Korea, California in USA, England, and Japan. The result of this comparison is that there are big differences on ranges, depths, and grades between mathematics contents in four countries' mathematics curriculum. In Korea, more contents are dealt in earlier grade and to higher level than other countries. And, these features are revealed more apparently in the area of algebra, analysis, and geometry than probability and statistics.

  • PDF