• Title/Summary/Keyword: (m, n)-injective module

Search Result 27, Processing Time 0.022 seconds

On Injectivity of Modules via Semisimplicity

  • Nguyen, Thi Thu Ha
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.641-655
    • /
    • 2022
  • A right R-module N is called pseudo semisimple-M-injective if for any monomorphism from every semisimple submodule of M to N, can be extended to a homomorphism from M to N. In this paper, we study some properties of pseudo semisimple-injective modules. Moreover, some results of pseudo semisimple-injective modules over formal triangular matrix rings are obtained.

GALOIS GROUPS OF MODULES AND INVERSE POLYNOMIAL MODULES

  • Park, Sang-Won;Jeong, Jin-Sun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.225-231
    • /
    • 2007
  • Given an injective envelope E of a left R-module M, there is an associative Galois group Gal$({\phi})$. Let R be a left noetherian ring and E be an injective envelope of M, then there is an injective envelope $E[x^{-1}]$ of an inverse polynomial module $M[x^{-1}]$ as a left R[x]-module and we can define an associative Galois group Gal$({\phi}[x^{-1}])$. In this paper we describe the relations between Gal$({\phi})$ and Gal$({\phi}[x^{-1}])$. Then we extend the Galois group of inverse polynomial module and can get Gal$({\phi}[x^{-s}])$, where S is a submonoid of $\mathbb{N}$ (the set of all natural numbers).

GALOIS GROUP OF GENERALIZED INVERSE POLYNOMIAL MODULES

  • Park, Sang-Won;Jeong, Jin-Sun
    • East Asian mathematical journal
    • /
    • v.24 no.2
    • /
    • pp.139-144
    • /
    • 2008
  • Given an injective envelope E of a left R-module M, there is an associative Galois group Gal($\phi$). Let R be a left noetherian ring and E be an injective envelope of M, then there is an injective envelope E[$x^{-1}$] of an inverse polynomial module M[$x^{-1}$] as a left R[x]-module and we can define an associative Galois group Gal(${\phi}[x^{-1}]$). In this paper we extend the Galois group of inverse polynomial module and can get Gal(${\phi}[x^{-s}]$), where S is a submonoid of $\mathds{N}$ (the set of all natural numbers).

  • PDF

A NOTE ON MONOFORM MODULES

  • Hajikarimi, Alireza;Naghipour, Ali Reza
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.505-514
    • /
    • 2019
  • Let R be a commutative ring with identity and M be a unitary R-module. A submodule N of M is called a dense submodule if $Hom_R(M/N,\;E_R(M))=0$, where $E_R(M)$ is the injective hull of M. The R-module M is said to be monoform if any nonzero submodule of M is a dense submodule. In this paper, among the other results, it is shown that any kind of the following module is monoform. (1) The prime R-module M such that for any nonzero submodule N of M, $Ann_R(M/N){\neq}Ann_R(M)$. (2) Strongly prime R-module. (3) Faithful multiplication module over an integral domain.

CONEAT SUBMODULES AND CONEAT-FLAT MODULES

  • Buyukasik, Engin;Durgun, Yilmaz
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1305-1319
    • /
    • 2014
  • A submodule N of a right R-module M is called coneat if for every simple right R-module S, any homomorphism $N{\rightarrow}S$ can be extended to a homomorphism $M{\rightarrow}S$. M is called coneat-flat if the kernel of any epimorphism $Y{\rightarrow}M{\rightarrow}0$ is coneat in Y. It is proven that (1) coneat submodules of any right R-module are coclosed if and only if R is right K-ring; (2) every right R-module is coneat-flat if and only if R is right V -ring; (3) coneat submodules of right injective modules are exactly the modules which have no maximal submodules if and only if R is right small ring. If R is commutative, then a module M is coneat-flat if and only if $M^+$ is m-injective. Every maximal left ideal of R is finitely generated if and only if every absolutely pure left R-module is m-injective. A commutative ring R is perfect if and only if every coneat-flat module is projective. We also study the rings over which coneat-flat and flat modules coincide.

PROPERTIES OF INDUCED INVERSE POLYNOMIAL MODULES OVER A SUBMONOID

  • Cho, Eunha;Jeong, Jinsun
    • Korean Journal of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.307-314
    • /
    • 2012
  • Let M be a left R-module and R be a ring with unity, and $S=\{0,2,3,4,{\ldots}\}$ be a submonoid. Then $M[x^{-s}]=\{a_0+a_2x^{-2}+a_3x^{-3}+{\cdots}+a_nx^{-n}{\mid}a_i{\in}M\}$ is an $R[x^s]$-module. In this paper we show some properties of $M[x^{-s}]$ as an $R[x^s]$-module. Let $f:M{\rightarrow}N$ be an R-linear map and $\overline{M}[x^{-s}]=\{a_2x^{-2}+a_3x^{-3}+{\cdots}+a_nx^{-n}{\mid}a_i{\in}M\}$ and define $N+\overline{M}[x^{-s}]=\{b_0+a_2x^{-2}+a_3x^{-3}+{\cdots}+a_nx^{-n}{\mid}b_0{\in}N,\;a_i{\in}M}$. Then $N+\overline{M}[x^{-s}]$ is an $R[x^s]$-module. We show that given a short exact sequence $0{\rightarrow}L{\rightarrow}M{\rightarrow}N{\rightarrow}0$ of R-modules, $0{\rightarrow}L{\rightarrow}M[x^{-s}]{\rightarrow}N+\overline{M}[x^{-s}]{\rightarrow}0$ is a short exact sequence of $R[x^s]$-module. Then we show $E_1+\overline{E_0}[x^{-s}]$ is not an injective left $R[x^s]$-module, in general.

RINGS AND MODULES CHARACTERIZED BY OPPOSITES OF FP-INJECTIVITY

  • Buyukasik, EngIn;Kafkas-DemIrcI, GIzem
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.439-450
    • /
    • 2019
  • Let R be a ring with unity. Given modules $M_R$ and $_RN$, $M_R$ is said to be absolutely $_RN$-pure if $M{\otimes}N{\rightarrow}L{\otimes}N$ is a monomorphism for every extension $L_R$ of $M_R$. For a module $M_R$, the subpurity domain of $M_R$ is defined to be the collection of all modules $_RN$ such that $M_R$ is absolutely $_RN$-pure. Clearly $M_R$ is absolutely $_RF$-pure for every flat module $_RF$, and that $M_R$ is FP-injective if the subpurity domain of M is the entire class of left modules. As an opposite of FP-injective modules, $M_R$ is said to be a test for flatness by subpurity (or t.f.b.s. for short) if its subpurity domain is as small as possible, namely, consisting of exactly the flat left modules. Every ring has a right t.f.b.s. module. $R_R$ is t.f.b.s. and every finitely generated right ideal is finitely presented if and only if R is right semihereditary. A domain R is $Pr{\ddot{u}}fer$ if and only if R is t.f.b.s. The rings whose simple right modules are t.f.b.s. or injective are completely characterized. Some necessary conditions for the rings whose right modules are t.f.b.s. or injective are obtained.

ON GI-FLAT MODULES AND DIMENSIONS

  • Gao, Zenghui
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.203-218
    • /
    • 2013
  • Let R be a ring. A right R-module M is called GI-flat if $Tor^R_1(M,G)=0$ for every Gorenstein injective left R-module G. It is shown that GI-flat modules lie strictly between flat modules and copure flat modules. Suppose R is an $n$-FC ring, we prove that a finitely presented right R-module M is GI-flat if and only if M is a cokernel of a Gorenstein flat preenvelope K ${\rightarrow}$ F of a right R-module K with F flat. Then we study GI-flat dimensions of modules and rings. Various results in [6] are developed, some new characterizations of von Neumann regular rings are given.

CERTAIN DISCRIMINATIONS OF PRIME ENDOMORPHISM AND PRIME MATRIX

  • Bae, Soon-Sook
    • East Asian mathematical journal
    • /
    • v.14 no.2
    • /
    • pp.259-268
    • /
    • 1998
  • In this paper, for a commutative ring R with an identity, considering the endomorphism ring $End_R$(M) of left R-module $_RM$ which is (quasi-)injective or (quasi-)projective, some discriminations of prime endomorphism were found as follows: each epimorphism with the irreducible(or simple) kernel on a (quasi-)injective module and each monomorphism with maximal image on a (quasi-)projective module are prime. It was shown that for a field F, any given square matrix in $Mat_{n{\times}n}$(F) with maximal image and irreducible kernel is a prime matrix, furthermore, any given matrix in $Mat_{n{\times}n}$(F) for any field F can be factored into a product of prime matrices.

  • PDF