• Title/Summary/Keyword: (b, s) coordinate

Search Result 93, Processing Time 0.026 seconds

Numerical Simulation of Subaerial and Submarine Landslides Using the Finite Volume Method in the Shallow Water Equations with (b, s) Coordinate ((b, s) 좌표로 표현된 천수방정식에 유한체적법을 사용하여 해상 및 해저 산사태 수치모의)

  • Pham, Van Khoi;Lee, Changhoon;Vu, Van Nghi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.4
    • /
    • pp.229-239
    • /
    • 2019
  • A model of landslides is developed using the shallow water equations to simulate time-dependent performance of landslides. The shallow water equations are derived using the (b, s) coordinate system which can be applied in both river and ocean. The finite volume scheme employing the HLL approximate Riemann solver and the total variation diminishing (TVD) limiter is applied to deal with the numerical discontinuities occurring in landslides. For dam-break water flow and debris flow, numerical results are compared with analytical solutions and experimental data and good agreements are observed. The developed landslide model is successfully applied to predict subaerial and submarine landslides. It is found that the subaerial landslide propagates faster than the submarine landslide and the speed of propagation becomes faster with steeper bottom slope and less bottom roughness.

Implementation of GPS/Galileo Integrated Navigation Algorithm and Analysis of Different Time-Coordinate Effect (GPS/Galileo 통합항법알고리즘 구현 및 시각 및 좌표계차이에 따른 영향분석)

  • Song, Jong-Hwa;Jee, Gyu-In;Jeong, Seong-Kyun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.171-178
    • /
    • 2008
  • Galileo is the Europe's global navigation satellite system corresponding to the GPS. The GIOVE-A test experiment has been finished and the second test satellite GIOVE-B will be launched soon. The integration of GPS and Galileo lead an increase of visible satellite number. We can obtain an improved navigation performance in signal blocked area such as urban or forest. GPS and Galileo have each time-coordinate system and use the different error model to calculate the navigation solution. In this paper, we studied on GPS and Galileo channel error model and time-coordinate system. Using this result, we implement the integrated navigation algorithm. In simulation, we analyzed the navigation error caused by time and coordinate disagreement and verified performance of integrated navigation algorithm in terms of visible satellite number, DOP(Dilution of Pression) and position error.

Development of DC Servo Motor Fuzzy Controller for Drive of Cartesian Coordinate Type Robot (평면좌표계형 로보트구동을 위한 퍼지 제어기 개발)

  • Choi, N.I.;Sung, K.M.;Jung, S.B.;Lee, S.I.;Cha, I.S.;Park, H.A.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.528-530
    • /
    • 1996
  • Because of the convenience of variable speed control and proportion of input current and torque, DC servo motor has been used as an actuator. With increasing development speed of robot and factory automation machinery, the actuator of excellent control characteristics is demanded. In this paper, The control characteristics of DC servo motor is tested by Fuzzy control with microprocessor and DC servo motor controller is designed for drive of the cartesian coordinate type robot. The control characteristics experimentation is realized to one axis position, two axes coordinate and circular motion control by experimental equipments.

  • PDF

STABILITY ANALYSIS OF COMPRESSIBLE BOUNDARY LAYER IN CURVILINEAR COORDINATE SYSTEM USING NONLINEAR PSE (비선형 PSE를 이용한 압축성 경계층의 안정성 해석)

  • Gao, B.;Park, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.134-140
    • /
    • 2007
  • Nonlinear parabolized stability equations for compressible flow in general curvilinear coordinate system are derived to deal with a broad range of transition prediction problems on complex geometry. A highly accurate finite difference PSE code has been developed using an implicit marching procedure. Blasius flow is tested. The results of the present computation show good agreement with DNS data. Nonlinear interaction can make the T-S fundamental wave more unstable and the onset of its amplitude decay is shifted downstream relative to linear case. For nonlinear calculations, rather small difference in initial amplitude can produce large change during nonlinear region. Compressible secondary instability at Mach number 1.6 is also simulated and showed that 1.1% initial amplitude for primary mode is enough to trigger the secondary growth.

  • PDF

Effect of ZnS:Mn, Dy Yellow Phosphor on White LEDs Characteristics (백색 LED의 특성에 대한 ZnS:Mn, Dy 황색 형광체의 영향)

  • Shin, Deuck-Jin;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.295-298
    • /
    • 2011
  • ZnS:Mn, Dy yellow phosphors for White Light Emitting Diode were synthesized by a solid state reaction method using ZnS, $MnSO_4{\cdot}5H_2O$, S and $DyCl_3{\cdot}6H_2O$ powders as starting materials. The mixed powder was sintered at $1000^{\circ}C$ for 4 h in an air atmosphere. The photoluminescence of the ZnS:Mn, Dy phosphors showed spectra extending from 480 to 700 nm, peaking at 580 nm. The photoluminescence of 580 nm in the ZnS:Mn, Dy phosphors was associated with $^4T_1{\rightarrow}^6A_1$ transition of $Mn^{2+}$ ions. The highest photoluminescence intensity of the ZnS:Mn, Dy phosphors under 450 nm excitation was observed at 4 mol% Dy doping. The enhanced photoluminescence intensity of the ZnS:Mn, Dy phosphors was explained by energy transfer from $Dy^{3+}$ to $Mn^{2+}$. The CIE coordinate of the 4 mol% Dy doped ZnS:Mn, Dy was X = 0.5221, Y = 0.4763. The optimum mixing conditions for White Light Emitting Diode was obtained at the ratio of epoxy : yellow phosphor = 1:2 form CIE coordinate.

An empirical clt for stationary martingale differences

  • Bae, Jong-Sig
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.427-446
    • /
    • 1995
  • Let S be a set and B be a $\sigma$-field on S. We consider $(\Omega = S^Z, T = B^z, P)$ as the basic probability space. We denote by T the left shift on $\Omega$. We assume that P is invariant under T, i.e., $PT^{-1} = P$, and that T is ergodic. We denote by $X = \cdots, X_-1, X_0, X_1, \cdots$ the coordinate maps on $\Omega$. From our assumptions it follows that ${X_i}_{i \in Z}$ is a stationary and ergodic process.

  • PDF

Pliable regression spline estimator using auxiliary variables

  • Oh, Jae-Kwon;Jhong, Jae-Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.5
    • /
    • pp.537-551
    • /
    • 2021
  • We conducted a study on a regression spline estimator with a few pre-specified auxiliary variables. For the implementation of the proposed estimators, we adapted a coordinate descent algorithm. This was implemented by considering a structure of the sum of the residuals squared objective function determined by the B-spline and the auxiliary coefficients. We also considered an efficient stepwise knot selection algorithm based on the Bayesian information criterion. This was to adaptively select smoothly functioning estimator data. Numerical studies using both simulated and real data sets were conducted to illustrate the proposed method's performance. An R software package psav is available.

A 8192-Point FFT Processor Based on the CORDIC Algorithm for OFDM System (CORDIC 알고리듬에 기반 한 OFDM 시스템용 8192-Point FFT 프로세서)

  • Park, Sang-Yoon;Cho, Nam-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8B
    • /
    • pp.787-795
    • /
    • 2002
  • This paper presents the architecture and the implementation of a 2K/4K/8K-point complex Fast Fourier Transform(FFT) processor for Orthogonal Frequency-Division Multiplexing (OFDM) system. The architecture is based on the Cooley-Tukey algorithm for decomposing the long DFT into short length multi-dimensional DFTs. The transposition memory, shuffle memory, and memory mergence method are used for the efficient manipulation of data for multi-dimensional transforms. Booth algorithm and the COordinate Rotation DIgital Computer(CORDIC) processor are employed for the twiddle factor multiplications in each dimension. Also, for the CORDIC processor, a new twiddle factor generation method is proposed to obviate the ROM required for storing the twiddle factors. The overall 2K/4K/8K-FFT processor requires 600,000 gates, and it is implemented in 1.8 V, 0.18 ${\mu}m$ CMOS. The processor can perform 8K-point FFT in every 273 ${\mu}s$, 2K-point every 68.26 ${\mu}s$ at 30MHz, and the SNR is over 48dB, which are enough performances for the OFDM in DVB-T.

THE ARTINIAN POINT STAR CONFIGURATION QUOTIENT AND THE STRONG LEFSCHETZ PROPERTY

  • Kim, Young-Rock;Shin, Yong-Su
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.645-667
    • /
    • 2019
  • It has been little known when an Artinian point quotient has the strong Lefschetz property. In this paper, we find the Artinian point star configuration quotient having the strong Lefschetz property. We prove that if ${\mathbb{X}}$ is a star configuration in ${\mathbb{P}}^2$ of type s defined by forms (a-quadratic forms and (s - a)-linear forms) and ${\mathbb{Y}}$ is a star configuration in ${\mathbb{P}}^2$ of type t defined by forms (b-quadratic forms and (t - b)-linear forms) for $b=deg({\mathbb{X}})$ or $deg({\mathbb{X}})-1$, then the Artinian ring $R/(I{\mathbb_{X}}+I{\mathbb_{Y}})$ has the strong Lefschetz property. We also show that if ${\mathbb{X}}$ is a set of (n+ 1)-general points in ${\mathbb{P}}^n$, then the Artinian quotient A of a coordinate ring of ${\mathbb{X}}$ has the strong Lefschetz property.