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ABSTRACT

This paper presents the architecture and the implementation of a 2K/4K/8K-point complex Fast Fourier
Transform (FFT) processor for Orthogonal Frequency-Division Multiplexing (OFDM) system. The architecture is
based on the Cooley-Tukey algorithm for decomposing the long DFT into short length multi-dimensional DFTs.
The transposition memory, shuffle memory, and memory mergence method are used for the efficient manipulation
of data for multi-dimensional transforms. Booth algorithm and the COordinate Rotation Dlgital Computer
(CORDIC) processor are employed for the twiddle factor multiplications in each dimension. Also, for the
CORDIC processor, a new twiddle factor generation method is proposed to obviate the ROM required for storing
the twiddle factors. The overall 2K/4K/8K-FFT processor requires 600,000 gates, and it is implemented in 1.8 V
0.18 um CMOS. The processor can perform 8K-point FFT in every 273 us, 2K-point every 68.26 us at 30MHz,
and the SNR is over 48dB, which are enough performances for the OFDM in DVB-T.

I. Introduction orthogonal frequency-division multiplexing

(OFDM) is a multicarrier transmission technique

Discrete multitone is widely used for digital employed in FEuropean digital terrestrial video
data transmission systems such as xDSL and transmission (DVB-T) system'”. OFDM divides
digital video/audio broadcasting. Specifically, the the available spectrum into many carriers, each
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being modulated by a low rate data stream
splitted from the original stream. OFDM is
similar to the FDMA in that multiple user access
is achieved by subdividing available bandwidth
into multiple channels. However, OFDM is a
more efficient way of multiple access because the
channel spacing is much narrower. This is
achieved by making all the carriers orthogonal to
one another, preventing interference between the
closely spaced carriers.

The number of carriers is usually very large in
DVB-T (more than 1024), and thus many
modulators should be used in parallel, which is
realistically unfeasible. Hence, it is implemented
by using the IFFT processor of size 2" that is
slightly greater than the number of subcarriers. A
simplified block diagram of modulation and
demodulation schemes based on the FFT processor
is shown in Figure 1. Each synchronous
subcarrier generated by the IFFT is modulated by
the baseband signal processing that exploits the
orthogonal property of the base function of
carriers. The IEEE802.11a standard for wireless
LAN specifies that only 52 out of 64 possible
subcarriers are modulated by the transmitter, and
thus single chip for FFT processor is not required
due to its short length. On the other hand,
OFDM for DVB-T requires baseband signal
processor to process about 8000 subcarriers
concurrently. Thus a large number of subcarriers
is required in OFDM modulation, and high speed
and long FFT processor is needed. A development
of IC process technolodgy has allowed the single
chip to be used to meet the standard, and thus
the major advantage of OFDM, single-frequency
network (SFN) can also be used. Hence, the FFT
processor is one of the most important modules
for the implementation of the OFDM system.

This paper presents an FFT processor that can
perform 2K and 8K DFT for European standard,
and also 4K for Japanese standard. The conven-
tional implementations are focused on 2K/8K
points with the Booth algorithm for the multipli-
cation"™"", The proposed system can also perform
4K point FFT, and employed CORDIC algorithm
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Fig 1. Block diagram of modulation/demodulation schemes
in OFDM system.

for the multiplications in order to save memory.
The design focuses of the proposed processor are
efficient use of memory, ROM size reduction, and
high output SNR. In the memory system, trans-
position and shuffle memory are employed for
efficient memory usage and addressing™. Also,
by using the memory mergence method, memory
requirement is further reduced. For the complex
multiplier, different methods are used depending
on the size of the decomposed DFTs. More
specifically, the complex multiplication in short-
length DFT modules is realized with only two or
three real multipliers by using the trigonometric
properties, whereas the conventional complex
multiplier employs four real multiplications. The
CORDIC algorithm is applied to the twiddle
factor multiplication for the long length DFT
modules™. Twiddle factor generation method for
the CORDIC algorithm is also proposed, which
allows additional memory saving.

This paper is organized as follows; The basic
building block for the Cooley-Tukey algorithm is
given in Section II. In Section [lI, the description
of overall architecture is given. In Section [V and
V, complex multiplier and memory control are
presented. Section VI presents the feature of the
implemented chip. Finally, Section VI gives
conclusions.

1. Basic Building Block for the
Cooley-Tukey Algorithm

The N-point discrete Fourier transform is
defined by
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Fig 2. Basic building blocks of the proposed system based
on the Cooley-Tukey algorithm (a) using the shuffie
memory, (b) using the transposition memory.

X(k) = }’Sox(n)w, k=0,1,...,N—-1 (1)

where Wy=e "M The input x(n) and the
output X(k) are complex numbers. There are
many fast algorithms for the implementation of
DFT, such as DIT (Decimation-in-Time), DIF
(Decimation-in-Frequency), Cooley-Tukeym, and
Winograd  algorithm?™.  For the 2"-DFT,
Cooley-Tukey algorithm results in DIT or DIF
algorithm. In this paper, Cooley-Tukey algorithm
is used, i.e., the long-length DFT is decomposed
into short-length multi-dimensional transforms.
Using the Cooley-Tukey algorithm, one-dimen-
sional input is mapped into a two-dimensional
sequence. For example, 16-point input data are
first arranged into a two-dimensional 4 x4 array.
Then, 4-point DFTs are computed in the column
order, and appropriate twiddle factors are
multiplied to each element of the matrix. 4-point
DFT is again applied to each row of the matrix.
In summary, the basic building block of the DFT
processor based on the Cooley Tukey algorithm is
described in Figure 2. As shown in Figure 2, the
MN point DFT computation is realized by four

modules M-point row (column) order DFT,

It
H
!
'
2
|

Fig 3. Block diagram of the proposed 2K/4K/8K FFT

structure (SPC : Serial to Parallel Converter, PSC :
Parallel to Serial Converter.

twiddle factor multiplier, memory shuffle, and
N-point column (row) order DFT. Shuffle and
transposition memory are required for pipelining.
More specifically, if the M-point DFT module
performed computations for row order data, then
the N-point DFT module reads the data in the
column order. Hence, the M-point DFT should
read new data in the column order for the
pipelined processing which fully exploits DFT and
memory modules. Thus the memory modules
should read/write in column and row order
alternatively. This is realized by the shuffle
memory when M %N, and transposition memory
when M =N. By recursively using the basic
building block in Figure 2 according to the
Cooley-Tukey algorithm, short length DFT
modules can be easily extended to 2K, 4K and
8K DFTs.

H. Overall Architecture

In this section, the architecture of the proposed
FFT processor is described in top-down order.
The main components of the proposed architecture
are the short-length DFTs, and transposition
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Fig 4. (a) Complex multiplier with two real multiplications. (b)

Complex multiplier with three real multiplications.

memory (TM) or shuffle memory (SM) for inter-
facing each short-length DFTs. The overall archi-
tecture of the proposed 2K/4K/8K FFT processor
is shown in Figure 3. As shown in the figure,
the 8K-point DFT is decomposed into 2K x4
two-dimensional DFT by the Cooley-Tukey
algorithm. In the similar manner, 4K-point DFT is
decomposed into 2K x2 DFT, and the 2K-point
DFT is again decomposed into 64 x32 DFT.
They are again decomposed into smaller DFTs
such as 8 and 4-point DFT. Hence, the basic
elements of the proposed method are the 4 and
8-point DFTs, twiddle factor multipliers (W1, W2,
W3, and W4 in Figure 3), and the memory
controllers. Note that the TM is used in 64-point
DFT, and the SM is used elsewhere, where both
are needed for converting the row-column order
Detailed
descriptions of multipliers and memory systems
will be given in the following sections.

addressing into  column-row order.

IV. Complex Multiplier

790

The 4-point and 8-point DFTs are realized by
direct implementation of the signal flow graph of
decimation-in-time  FFT'?. For the efficient
computation of the twiddle factor multiplication,
different methods are applied to three different
cases : two real multipliers in 8-point DFT, three
real multipliers for the 32 and 64-point DFT, and
CORDIC multiplier for the higher point DFTs.

4.1 Two Real Multiplications

In 8-point DFT, the only non-trivial twiddle
cos(0.757) +jsin(0.757)  (Others  are
trivial twiddle factors such as +1, +j).
Non-trivial twiddle factor multiplications in the
8-point DFT can be expressed as

factor is

A x W= (AR+].AI)X(__712' il“}z’)

= (~ARFA)F5 +i~ A ADF

where A= Ar+jA, is the input to the multiplier,
and

528 e »
Wite = cos(0.757) +jsin(0.751).

Since the real and imaginary parts of the
twiddle factor are both 1/v2, two real multipliers
are sufficient in the 8-point DFT module. They
are implemented by the Booth algorithm, and the
schematic diagram of the multiplier is shown in
Figure 4(a).

4.2 Three Real Multiplications

Though the complex multiplication requires four
real multiplications, the number of real multipliers
can be reduced into three by using the simple
properties of trigonometric functions. More specifi-
cally, the twiddle factor multiplication can be
expressed as

AX WA'f= (AR+jA1)X(C060—jSin6)
= (Agcosb+Asind) 3)
+ j(Acos 86— Agsiné).

The terms in the righthand of (3) can be
expressed as
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Agcos 8+ Asind = Ap(sinf+d)+ A,sinf
=(Ap+Ap)sinf+ Agd,
4
Ajcos0— Apsind = A;cos 6— Ap(cos 68— d)
=(Ar-Ag)cos 0+ Axd,

where d=cosf—sinf. Hence, Ax W} can be
realized by using three real muitipliers as shown
in Figure 4(b). Table 1 compares the proposed
complex multiplier with the conventional complex
multiplier in the accuracy and hardware
complexity. Both are realized by using the Booth
algorithm as stated previously. In the simulation,
131,072 combinations of 4096 12-bit integer
random inputs and 32 twiddle factor angles at
every 1/16 7 (rad) are used with double float
precision arithmetic. The result shows that the
proposed algorithm saves hardware by about 23%
and yields about 0.007 lower RMS error than the
conventional approach.

Table 1. Comparison between proposed complex multiplier
and the conventional complex multiplier
(Method! : four real multipliers, Method2 : three

real muitipliers).
mean abs bs max ate
Method RMS mean | 8
error r CITor count

Real | 03856 |-0.0007 | 0.2945 | 1.1614
Method! 23,589
Imag | 0.3846 } -0.0004 | 0.2932 | 1.1690

Real | 0.3782 | -0.0010 | 0.2888 | 1.1453
Method2 18,171
Imag | 0.3785 | -0.0008 | 0.2887 | 1.1611

4.3 CORDIC Processor

In the twiddle factor multiplications for larger
transforms (W2 and W4 in Figure 3), the Booth
multiplier is not efficient since it requires a large
ROM for storing many twiddle factors. For
example, the conventional multiplier with four real
multiplications needs two ROM storages (sine and
cosine value) for every twiddle factor, which
results in 81,920 bits of ROM in the case of
8K-point FFT. In order to obviate such large
ROM, a complex multiplier is employed based on
the COordinate Rotation DIgital Computer
(CORDIC) algorithm'®.

4.3.1 CORDIC Algorithm

CORDIC is an iterative arithmetic algorithm
proposed by Volder in 19597, Using the
CORDIC algorithm, elementary functions such as
trigonometric, exponential, and logarithm can be
evaluated efficiently. The basic function of the
CORDIC is to rotate a 2 x 1 vector in a linear,
circular, or hyperbolic coordination systems.

For computing the FFT using CORDIC, the
angle of the twiddle factor is decomposed into
the weighted sum of the set of predefined
elementary rotation angles. That is, the rotation
angle ¢ can be represented as

0="8 nal, ©®)

where N is the number of iterations, and the
term  y; is a sequence of +1s which determines
the direction of remaining angle. And the o(i) is
the i-th elementary rotation angle which can be
denoted as

a(d)=tan "27]. ©)

The CORDIC algorithm consists of two parts,
namely the iteration process and the scaling factor
multiplication process. At each iteration, the input
vector is rotated by the angle a(:). At the i-th
iteration, the rotation matrix can be described as

sl 1 —p27f
po=[ o )
=V1+0°® cosa() —p,sina(?)
[ wsina(d)  cosa(s) ]
2(i+1)=2() — pa(d), 3

where z(7) is the remaining angle after the i-th
iteration process. The iteration process relates the
v(i+ 1) =[x+ 1), i +1)] to its
input vector o(7)=[x(s), )] as

output vector

Wi+ D= P (), i=0,1,...N~1, )]

However, since the iteration process is not
performed on a circle of fixed radius, it is
needed to normalize the magnitude of the result
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Fig 5. Twiddle factor generation method for the 16-point
DFT.

at the final stage. The output of the iteration
process o(N) can be divided by the scaling
factor given by

KNy = Ek(i)= E‘/ 1+27% (10

where k(7)) is the scaling factor at the i-th
iteration process. Hence, the scaling factor
multiplication process is represented as

~

1
A=y “D, an

where (N) is the CORDIC output.

4.3.2 Twiddle Factor Generation Method

The conventional CORDIC processor requires
ROM for storing the rotation angles of twiddle
factors. More specifically, about 3000-word 16-bit
ROM and additional hardware are needed for
storing the twiddle factors for the proposed
system. Hence, this study proposes a twiddle
factor generation method that obviates the ROM
in W2 and W4 of Figure 3. This method is

based on the fact that the angle of the twiddle
factor Wy is just -ZN@nk, and thus the input

index » times the output index £ is closely

Table 2. Hardware requirements for the complex multip-
lier (given 16-bit for each sine and cosine value).

conventional Proposed scheme
approach
(four real three real CORDIC
multipliers) multipliers processor
ROM size 81,920 bits 0 bit 0 bit

Gate count
(excluding 23,589 gates 18,17 gates 26,974 gates
ROM)

192

related to the rotation angle. At the iteration
process, the angle is updated as

26+ 1) = D) —ptan~'[27,
12
i=0,1,...N—1

where 2z(0) is the angle of the twiddle factor

2% . Dividing both sides by N2z, a

nommalized angle update

ZGi+ D= 2()—ptan {2715,
4 a3

i=0,1,...N-1
is achieved, where z'(0)=nk Since ;= +1, the
proposed CORDIC processor needs only the

constants tan”[z"'%, which can be imple-

mented using logic. Since » and £ are input and
output address respectively, they can be easily
obtained from address lines, and normalized angle
is their product as shown in Figure 5.

Twiddle factor generation method can also be
efficiently applied to all other FFT algotithms as
well as Cooley-Tukey algorithm. A hardware
requirement of the complex multiplier is shown in
Table 2. Using the proposed scheme, not only the
overall ROM size but also additional hardwares
such as word-line decoder and pull up registers,
are significantly reduced compared to the
conventional approach.

V. Memory Control

5.1 Memory Address Generation Method

For the implementation of DFT using the
Cooley-Tukey algorithm, memory control also
plays an important role. Transposition memory
(TM) and shuffle memory (SM) is employed in
[4], which are based on the memory address
generation methods that convert row order to
column order with a minimum amount of
memory. For the N xN transforms, a conventional
TM can be used. But, for the M x N transforms,
where M is not equal to N, SM provides a
memory-efficient architecture. SM and TM have
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Fig 6. The simplified global structure of the proposed FFT

processor (a) before using memory mergence method,
(b) after using memory mergence method.

the following characteristics :

A. SM and TM can receive an input array in
row major order while providing an output
array in column major order.

B. SM and TM can support ‘read-then-write at
the same address operation.’

In the proposed system, the transposition memory
is used in 64-point DFT, and the shuffle memory
are used elsewhere as shown in Figure 3. Further
details about memory address generation can be
found in [3-4].

FRONT 2K x 4 ADDRESS SEQUENCE
Line1: 121110 9 8 7 6 5
Line2: 10 9 8 7 6 3
Lined: 5 4 3 2 t olio 9

5 4 9

tined4: |2 1 0 310

2 1 0
0112 11] 2Kx4
612 11 64x32
6 12 11 8x8
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3T DRAM 3-T DRAM [
sub block _! aub block .
Y S S

Fig. 8 Structure of the 8K-word shuffle memory.

5.2 Memory Mergence Method

Figure 6(a) is a simplified global structure of
the proposed FFT processor. As shown in the
figure, three transposition or shuffle memories are
used to compute one FFT module. For example,
three 8 x8 transposition memories are used in
64-point FFT. But, since one of the memories is
larger than the other two memories in the same
box, three memories are redundant. They can be
reduced to only one memory after using the
memory mergence method. Figure 7 shows an
example of memory mergence method. Line 1 in
Figure 7 shows the indices of memory address of
the first box in Figure 6(a). If the positions of
the most significant 2 bits are replaced with that
of other 11 bits as Line 2, front 8K memory can
play the role of 2K x4 shuffle memory. In the
similar manner, if the positions of the most
significant S bits are replaced with that of other 6
bits except the 2 bits of Line 1, front 8K
memory can play the role of not only 2K x4 but
also 64 x32 shuffle memory as Line 3. Finally,
operation of Line 4, three
memories in the box can be substituted by one
8K memory. Figure 6(b) shows a global structure
after performing a memory mergence method.

performing the

5.3 Implementation of Memory System
Basic building blocks of SM are memory-
cell-array using 3-T DRAM, address generator,
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word-line decoder, input data buffer, sense
amplifier, and bus driver. In particular, because
bit line of read mode can be operated independ-
ent of that of write mode in the memory-cell-
array using 3-T DRAM, consecutive read-then-
write at the same address can be performed with
partitioning clock cycle. The 8K-word shuffle
memory in Figure 8 is decomposed into four
2K-word memory blocks, and 2K-word memory
sub block is again decomposed into eight 256-
word 3-T DRAM for the stability of read mode.
8K-word shuffle memory operates as 8K or
2K-word memory according to the block selection
signal. Moreover, the proposed memory system
has been designed to tolerate guard interval that
is defined in OFDM system in order to deal with
the delay-spread distortion of the transmitted data.

Table 3. The chip features of the proposed system.

2K-point FFT|4K-point FFT|8K-point FFT

Time delay 212.27 us 486.67 us 896.27 us
Speed 68.27 us 136.5 us 273 us
SNR 49.0826dB 49.1275dB 48.5025dB

VI. Chip Features

Based on the fixed-point error analysis of the
CORDIC for DFT™"!  the finite precision
rounding and approximation error of the proposed
system were analyzed, and the appropriate word
length was determined. More specifically, the
proposed system has been designed with 2 x
10-bit input, 2 x12-bit output, and 2 x 16-bit
internal precision. Also, 5 extra bits are added,
and 17 iteration processes have been performed in
order to guarantee the accuracy of the conven-
tional complex multiplier. Table 3 shows the chip
features of the proposed system. The performance
of the proposed FFT processor always exceeds the
SNR of 48dB, and which is enough for digital
terrestrial TV broadcasting. The proposed architec-
ture has been synthesized in the 1.8 V 0.18 um

194

CMOS technology. It results in about 600,000
gates for logic and storage.

VL. Conclusions

This study designed and implemented an FFT
processor which can perform 2K, 4K and 8K
DFT for OFDM system. The architecture is based
on the Cooley-Tukey algorithm for modular
structure, and thus the 2K/4K/8K point selection
is easily achieved. For an efficient complex
multiplication, a complex multiplier was used
which requires two or three real multipliers rather
than four as in the conventional methods. In
addition, complex multiplier based on the
CORDIC algorithm is used and a twiddle factor
generation method is proposed for saving the
ROM size. A transposition memory for the
pipelined processing, and also the shuffle memory,
which is a generalization of the transposition
memory, were used. They receive inputs in row
major order while providing outputs in column
major order. Thus they can provide for a memory
efficient architecture for separable 2-D transforms.
Also, by using the memory mergence method, the
memory usage is increased. The overall
2K/4K/8K-FFT processor requires 600,000 gates,
and it is implemented in 1.8 V 0.18 pm CMOS.
The processor can perform 8K-point FFT every
273 ps, and 2K-point every 68.26 us at 30MHz,
which exceeds the OFDM symbol rate. The
output SNR is higher than 48dB, which is
sufficient for DVB-T.
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