• Title/Summary/Keyword: (±

Search Result 3,778, Processing Time 0.032 seconds

Structures and Formation Energies of LixC6 (x=1-3) and its Homologues for Lithium Rechargeable Batteries

  • Doh, Chil-Hoon;Han, Byung-Chan;Jin, Bong-Soo;Gu, Hal-Bon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.2045-2050
    • /
    • 2011
  • Using first principles density functional theory the formation energies of various binary compounds of lithium graphite and its homologues were calculated. Lithium and graphite react to form $Li_1C_6$ (+141 mV) but not form $LiC_4$ (-143 mV), $LiC_3$ (-247 mV) and $LiC_2$ (-529 mV) because they are less stable than lithium metal itself. Properties of structure and reaction potentials of $C_5B$, $C_5N$ and $B_3N_3$ materials as iso-structural graphite were studied. Boron and nitrogen substituted graphite and boron-nitrogen material as a iso-electronic structured graphitic material have longer graphene layer spacing than that of graphite. The layer spacing of $Li_xC_6$, $Li_xC_5B$, $Li_xC_5N$ materials increased until to x=1, and then decreased until to x=2 and 3. Nevertheless $Li_xB_3N_3$ has opposite tendency of layer spacing variation. Among various lithium compositions of $Li_xC_5B$, $Li_xC_5N$ and $Li_xB_3N_3$, reaction potentials of $Li_xC_5B$ (x=1-3) and $Li_xC_5$ (x=1) from total energy analyses have positive values against lithium deposition.

MOMENT CONVERGENCE RATES OF LIL FOR NEGATIVELY ASSOCIATED SEQUENCES

  • Fu, Ke-Ang;Hu, Li-Hua
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.263-275
    • /
    • 2010
  • Let {$X_n;n\;\geq\;1$} be a strictly stationary sequence of negatively associated random variables with mean zero and finite variance. Set $S_n\;=\;{\sum}^n_{k=1}X_k$, $M_n\;=\;max_{k{\leq}n}|S_k|$, $n\;{\geq}\;1$. Suppose $\sigma^2\;=\;EX^2_1+2{\sum}^\infty_{k=2}EX_1X_k$ (0 < $\sigma$ < $\infty$). We prove that for any b > -1/2, if $E|X|^{2+\delta}$(0<$\delta$$\leq$1), then $$lim\limits_{\varepsilon\searrow0}\varepsilon^{2b+1}\sum^{\infty}_{n=1}\frac{(loglogn)^{b-1/2}}{n^{3/2}logn}E\{M_n-\sigma\varepsilon\sqrt{2nloglogn}\}_+=\frac{2^{-1/2-b}{\sigma}E|N|^{2(b+1)}}{(b+1)(2b+1)}\sum^{\infty}_{k=0}\frac{(-1)^k}{(2k+1)^{2(b+1)}}$$ and for any b > -1/2, $$lim\limits_{\varepsilon\nearrow\infty}\varepsilon^{-2(b+1)}\sum^{\infty}_{n=1}\frac{(loglogn)^b}{n^{3/2}logn}E\{\sigma\varepsilon\sqrt{\frac{\pi^2n}{8loglogn}}-M_n\}_+=\frac{\Gamma(b+1/2)}{\sqrt{2}(b+1)}\sum^{\infty}_{k=0}\frac{(-1)^k}{(2k+1)^{2b+2'}}$$, where $\Gamma(\cdot)$ is the Gamma function and N stands for the standard normal random variable.

GENERALIZED STABILITIES OF CAUCHY'S GAMMA-BETA FUNCTIONAL EQUATION

  • Lee, Eun-Hwi;Han, Soon-Yi
    • Honam Mathematical Journal
    • /
    • v.30 no.3
    • /
    • pp.567-579
    • /
    • 2008
  • We obtain generalized super stability of Cauchy's gamma-beta functional equation B(x, y) f(x + y) = f(x)f(y), where B(x, y) is the beta function and also generalize the stability in the sense of R. Ger of this equation in the following setting: ${\mid}{\frac{B(x,y)f(x+y)}{f(x)f(y)}}-1{\mid}$ < H(x,y), where H(x,y) is a homogeneous function of dgree p(0 ${\leq}$ p < 1).

On Skew Centralizing Traces of Permuting n-Additive Mappings

  • Ashraf, Mohammad;Parveen, Nazia
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • Let R be a ring and $D:R^n{\longrightarrow}R$ be n-additive mapping. A map $d:R{\longrightarrow}R$ is said to be the trace of D if $d(x)=D(x,x,{\ldots}x)$ for all $x{\in}R$. Suppose that ${\alpha},{\beta}$ are endomorphisms of R. For any $a,b{\in}R$, let < a, b > $_{({\alpha},{\beta})}=a{\alpha}(b)+{\beta}(b)a$. In the present paper under certain suitable torsion restrictions it is shown that D = 0 if R satisfies either < d(x), $x^m$ > $_{({\alpha},{\beta})}=0$, for all $x{\in}R$ or ${\ll}$ d(x), x > $_{({\alpha},{\beta})}$, $x^m$ > $_{({\alpha},{\beta})}=0$, for all $x{\in}R$. Further, if < d(x), x > ${\in}Z(R)$, the center of R, for all $x{\in}R$ or < d(x)x - xd(x), x >= 0, for all $x{\in}R$, then it is proved that d is commuting on R. Some more related results are also obtained for additive mapping on R.

Effect of Ga, Nb Addition on Disproportionation Kinetics of Nd-Fe-B Alloy

  • Kwon, H.W.;Yu, J.H.
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.150-154
    • /
    • 2009
  • The effect of Ga and, Nb addition on the kinetics and mechanism of the disproportionation of a Nd-Fe-B alloy were investigated by isothermal thermopiezic analysis (TPA) using $Nd_{12.5}Fe_{(81.1-(x+y))}B_{6.4}Ga_xNb_y$ (x=0 and 0.3, y= 0 and 0.2) alloys. The addition of Ga and Nb retarded the disproportionation kinetics of the Nd-Fe-B alloy significantly, and increased the activation energy of the disproportionation reaction. The disproportionation kinetics of the $Nd_{12.5}Fe_{(81.1-(x+y))}B_{6.4}Ga_xNb_y$ alloys measured under an initial hydrogen pressure of 0.02 MPa were fitted to a parabolic rate law. This suggested that during the disproportionation of $Nd_{12.5}Fe_{(81.1-(x+y))}B_{6.4}Ga_xNb_y$ alloys with an initial hydrogen pressure of 0.02 MPa, a continuous disproportionation product is formed and the overall reaction rate is limited by the diffusion of hydrogen atoms (or ions).

ON THE STRONG LAWS OF LARGE NUMBERS OF NEGATIVELY ASSOCIATED RANDOM VARIABLES

  • Baek, J.I.;Choi, J.Y.;Ryu, D.H.
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.457-466
    • /
    • 2004
  • Let{$X_{ni}$\mid$\;1\;{\leq}\;i\;{\leq}\;k_n,\;n\;{\geq}\;1$} be an array of rowwise negatively associated random variables such that $P$\mid$X_{ni}$\mid$\;>\;x)\;=\;O(1)P($\mid$X$\mid$\;>\;x)$ for all $x\;{\geq}\;0,\;and\; \{k_n\}\;and\;\{r_n\}$ be two sequences such that $r_n\;{\geq}\;b_1n^r,\;k_n\;{\leq}\;b_2n^k$ for some $b_1,\;b_2,\;r,\;k\;>\;0$. Then it is shown that $\frac{1}{r_n}\;max_1$\mid${\Sigma_{i=1}}^j\;X_{ni}$\mid$\;{\rightarrow}\;0$ completely convergence and the strong convergence for weighted sums of N A arrays is also considered.

A NOTE ON WITT RINGS OF 2-FOLD FULL RINGS

  • Cho, In-Ho;Kim, Jae-Gyeom
    • Bulletin of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.121-126
    • /
    • 1985
  • D.K. Harrison [5] has shown that if R and S are fields of characteristic different from 2, then two Witt rings W(R) and W(S) are isomorphic if and only if W(R)/I(R)$^{3}$ and W(S)/I(S)$^{3}$ are isomorphic where I(R) and I(S) denote the fundamental ideals of W(R) and W(S) respectively. In [1], J.K. Arason and A. Pfister proved a corresponding result when the characteristics of R and S are 2, and, in [9], K.I. Mandelberg proved the result when R and S are commutative semi-local rings having 2 a unit. In this paper, we prove the result when R and S are 2-fold full rings. Throughout this paper, unless otherwise specified, we assume that R is a commutative ring having 2 a unit. A quadratic space (V, B, .phi.) over R is a finitely generated projective R-module V with a symmetric bilinear mapping B: V*V.rarw.R which is nondegenerate (i.e., the natural mapping V.rarw.Ho $m_{R}$ (V, R) induced by B is an isomorphism), and with a quadratic mapping .phi.:V.rarw.R such that B(x,y)=(.phi.(x+y)-.phi.(x)-.phi.(y))/2 and .phi.(rx)= $r^{2}$.phi.(x) for all x, y in V and r in R. We denote the group of multiplicative units of R by U(R). If (V, B, .phi.) is a free rank n quadratic space over R with an orthogonal basis { $x_{1}$, .., $x_{n}$}, we will write < $a_{1}$,.., $a_{n}$> for (V, B, .phi.) where the $a_{i}$=.phi.( $x_{i}$) are in U(R), and denote the space by the table [ $a_{ij}$ ] where $a_{ij}$ =B( $x_{i}$, $x_{j}$). In the case n=2 and B( $x_{1}$, $x_{2}$)=1/2, we reserve the notation [ $a_{11}$, $a_{22}$] for the space.the space.e.e.e.

  • PDF

Nucleation and growth of vacancy agglomeration in CZ silicon crystals

  • Ogawa, Tomoya;Ma, Minya
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.3
    • /
    • pp.286-288
    • /
    • 1999
  • When concentration of vacancies in a CZ silicon crystal is defined by molar fraction $X_{B}$, the degree for supersaturation $\sigma$ is given by $[X_{B}-X_{BS}]/X_{BS}=X_{B}/X_{BS}-1=ln(X_{B}/X_{BS})$ because $X_{B}/X_{BS}$ is nearly equal to unity. Here, $X_{BS}$ is the saturated concentration of vacancies in a silicon crystal and $X_{B}$ is a little larger than $X_{BS}$. According to Bragg-Williams approximation, the chemical potential of the vacancies in the crystal is given by ${\mu}_{B}={\mu}^{0}+RT$ ln $X_{B}+RT$ ln ${\gamma}$, where R is the gas constant, T is temperature, ${\mu}^{0}$ is an ideal chemical potential of the vacancies and ${\gamma}$ is and adjustable parameter similar to the activity of solute in a solute in a solution. Thus, ${\sigma}(T)$ is equal to $({\mu}_{B}-{\mu}_{BS})/RT$. Driving force of nucleation for the vacancy agglomeration will be proportional to the chemical potentialdifference $({\mu}_{B}-{\mu}_{BS})/RT$ or ${\sigma}(T)$, while growth of the vacancy agglomeration is proportaional to diffusion of the vacancies and grad ${\mu}_{B}$.

  • PDF

A PROPERTY OF COFUNCTORS SF(X,A)

  • So, Kwang Ho
    • Kyungpook Mathematical Journal
    • /
    • v.13 no.2
    • /
    • pp.235-240
    • /
    • 1973
  • A k-dimensional vector bundle is a bundle ${\xi}=(E,P,B,F^k)$ with fibre $F^k$ satisfying the local triviality, where F is the field of real numbers R or complex numbers C ([1], [2] and [3]). Let $Vect_k(X)$ be the set consisting of all isomorphism classes of k-dimensional vector bundles over the topological space X. Then $Vect_F(X)=\{Vect_k(X)\}_{k=0,1,{\cdots}}$ is a semigroup with Whitney sum (${\S}1$). For a pair (X, A) of topological spaces, a difference isomorphism over (X, A) is a vector bundle morphism ([2], [3]) ${\alpha}:{\xi}_0{\rightarrow}{\xi}_1$ such that the restriction ${\alpha}:{\xi}_0{\mid}A{\longrightarrow}{\xi}_1{\mid}A$ is an isomorphism. Let $S_k(X,A)$ be the set of all difference isomorphism classes over (X, A) of k-dimensional vector bundles over X with fibre $F^k$. Then $S_F(X,A)=\{S_k(X,A)\}_{k=0,1,{\cdots}}$, is a semigroup with Whitney Sum (${\S}2$). In this paper, we shall prove a relation between $Vect_F(X)$ and $S_F(X,A)$ under some conditions (Theorem 2, which is the main theorem of this paper). We shall use the following theorem in the paper. THEOREM 1. Let ${\xi}=(E,P,B)$ be a locally trivial bundle with fibre F, where (B, A) is a relative CW-complex. Then all cross sections S of ${\xi}{\mid}A$ prolong to a cross section $S^*$ of ${\xi}$ under either of the following hypothesis: (H1) The space F is (m-1)-connected for each $m{\leq}dim$ B. (H2) There is a relative CW-complex (Y, X) such that $B=Y{\times}I$ and $A=(X{\times}I)$ ${\cap}(Y{\times}O)$, where I=[0, 1]. (For proof see p.21 [2]).

  • PDF

Improvement of a Nitrogen Fertilizer Recommendation Model by introducing a Concept of the Mitscherlich-Baule-Spillman Equation (토양검정에 의한 질소시비량 결정에 Mitscherlich-Baule-Spillman 개념의 응용)

  • Kwak, Han-Kang;Song, Yo-Sung;Yeon, Byeong-Yeol;Oh, Wang-Keun;Jung, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.5
    • /
    • pp.311-315
    • /
    • 2001
  • In order to improve a soil test-based fertilization model for nitrogen, the Mitscherlich-Baule-Spillman equation modified by Bray and his coworkers was introduced and tested for its possibility of application. The coefficients $C_1$ and $C_2$ in the equation A were calculated by applying 10 pot experimental results done by the National Institute of Agricultural Sciences and Technology. Then, a regression(B) between C_1 and x, the fertilizer level was estimated. log(Ymax-Y) = logYmax-$C_1x-C_2b$ (A) where Ymax : maximum yield. Y : yield without or with a limited amount of fertilizer applied, x : application level of fertilizer, b : content of a nutrient in soil, $C_1$ and $C_2$ : coefficients of x and b, respectively. log(0.05)=$-C_1x-C_2b$ (B) Fertilizer requirement calculated by the equation B was significantly correlated with the real level of fertilizer applied for 95 percentage of the maximum yield. A more extensive and precise study on $C_1$ and $C_2$ in the equation A in expected to improve significantly the fitness of soil analysis to the fertilizer recommendation.

  • PDF