• Title/Summary/Keyword: 'Solid' liposome

Search Result 12, Processing Time 0.029 seconds

Bioenvironmental Interaction of Toxic Peptide Hornet Venom with Phospholipid (Hornet 독액의 독성 Peptide와 Phospholipid 간의 생체환경적 상호작용)

  • 김광호;이봉헌
    • Journal of Environmental Science International
    • /
    • v.6 no.2
    • /
    • pp.189-194
    • /
    • 1997
  • Toxic peptides from hornet venom, mastoparan and mastoparan-B were synthesized us- ing the solid phase peptide synthesis method and investigated the interaction of them with phospholipid bilayer, antibacterial activity, and hemolytic activity. Both toxic peptides could induce dye release at a low concentration in neutral liposome. The binding affinity of mastoparan-B for neutral liposome was smaller than that for acidic one. Mastoparan and mastoparan-B had strong antibacterial activity for gram-positive bacteria, but weak or potent activity for gram-negative ones, respectively. Mastoparan and mastoparan-B lysed erythrocyte very little up to 5 $\mu$M.

  • PDF

In Vitro and In Vivo Studies of Different Liposomes Containing Topotecan

  • Hao, Yan-Li;Deng, Ying-Jie;Chen, Yan;Wang, Xiu-Min;Zhong, Hai-Jun;Suo, Xu-Bin
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.626-635
    • /
    • 2005
  • Liposome as a carrier of topotecan (TPT), a promising anticancer drug, has been reported in attempt to improve the stability and antitumor activity of TPT. However, the biodistr ibution pattern of TPT liposome in vivo and PEG-modified liposome containing TPT have not been studied systemically. In this paper, the in vitro stability and in vivo biodistribution behavior of several liposomes containing TPT with different lipid compositions and PEG-modification were studied. Compared with the 'fluid' liposome (S-Lip) composed of soybean phosphatidylcholine (SPC), the 'solid' liposome (H-Lip) composed of hydrogenated soybean phosphatidylcholine HSPC decreased the leaking efficiency of TPT from liposome and enhanced the stability of liposome in fetal bovine serum (FBS) or human blood plasma (HBP). The results of biodistribution studies in S$_{180}$ tumor-bearing mice showed that liposomal encapsulation increased the concentrations of total TPT and the ratio of lactone form in plasma. Compared with free TPT, S-Lip and H-Lip resulted in 5- and 19- fold increase in the area under the curve (AUC$_{0\rightarrow\propto}$), respectively. PEG- modified H-Lip (H-PEG) showed 3.7-fold increase in AUC$_{0\rightarrow\propto}$ compared with H-Lip, but there was no significant increase in t$_{1/2}$ and AUC$_{0\rightarrow\propto}$ for PEG-modified S-Lip (S-PEG) compared with S-Lip. Moreover, the liposomal encapsulation changed the biodistribution behavior, and H-Lip and H-PEG dramatically increased the accumulation of TPT in tumor, and the relative tumor uptake ratios were 3.4 and 4.3 compared with free drug, respectively. There was also a marked increase in the distribution of TPT in lung when the drug was encapsulated into H-Lip and H-PEG. Moreover, H-PEG decreased the accumulation of TPT in bore marrow compared with unmodified H-Lip. All these results indicated that the membrane fluidity of liposome has an important effect on in vitro stability and in vivo biodistribution pattern of liposomes containing TPT, and PEG-modified 'solid' liposome may be an efficient carrier of TPT.

Lamellar-bio nano-hybrid; The Study for Stability of Catechin (Green Tea: EGCG) Using 3-Dimensional Liposome (라멜라-바이오 나노하이브리드: 3 Dimension-liposome을 이용한 카테킨(EGCG)에 안정화에 대한 연구)

  • Hong Geun, Ji;Jung Sik, Choi;Hee Suk, Kwon;Sung Rack, Cho;Byoung Kee, Jo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.201-205
    • /
    • 2004
  • In these several years, as many people have been attracted by the functional cosmetics, there are a lot of study to enhance the stability of active ingredients for light, heat, oxygen, etc. in the academic and industrial field. Especially, catechin is well known as strong anti-oxidant, anti-inflammatory and reducing agent for oxidative stress but it is very unstable for light, heat, oxygen. etc. In this study, the stability and skin penetration of catechin are improved by 3-dimensional method. As I-dimension, porous silica is prepared using sol-gel method, and then catechin is adsorbed in pores of silica. As 2-dimension, solid lipid nanoparticles (SLN) are obtained using non-phospholipid vesicles. Finally 3-dimension is completion through lamellar phase self-organization that combines SLN catechin with skin lipid matrix. We used laser light scattering system, cyro-SEM, chromameter, HPLC and image analyzer to analyze our 3-dimentional systems. According to chromameter date, the color stability of 3-dimensional catechin is enhanced by 5-10 times compared with general liposome systems. We also confirmed through HPLC analysis that 3-dimensional catechin is more long lasting. The effect of skin penetration and wrinkle reduction are improved, too.

Synthesis of Polymerizable Amphiphiles with Basic Oligopeptides for Gene Delivery Application (염기성 올리고펩티드 유도체를 가진 고분자 리피드의 합성 및 유전자 전달 효과 연구)

  • Bae, Seon Joo;Choi, Hye;Choi, Joon Sig
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.94-99
    • /
    • 2013
  • Polydiacetylene (PDA) is made by photopolymerization of self-assembled diacetylene monomers. If diacetylene monomers are arranged systematically and close enough with distance of atoms, 1,4-addition polymerization will occur by the irradiation of 254 nm ultraviolet rays and then PDA will have alternated ene-yne polymer chains at the main structure. Aqueous solutions of diffused PDA is tinged with blue which shows ${\lambda}_{max}$ 640 nm. Visible color changes from blue to red occurs in response to a variety of environmental perturbations, such as temperature, pH, and ligand-receptor interactions. In this study, we synthesized cationic peptides - PCDA(10,12-pentacosadyinoic acid) liposome using a solid phase peptide synthesis (SPPS) method and prepared liposome solutions at various molar ratios using MPEG-PCDA. When mammalian cells were treated with the liposomes, high transfection efficiency and low toxicity were observed.

Anti-tumour Efficiency of Chitosan Hydrogel Containing Anionic Liposomes as a Depot System (음이온성 리포솜이 결합된 키토산 겔의 항암효과)

  • Choi, Min-Soo;Han, Hee-Dong;Kim, Tae-Woo;Song, Chung-Kil;Park, Eun-Seok;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.1
    • /
    • pp.25-31
    • /
    • 2005
  • Depot system for local drug delivery using chitosan hydrogel has been developed to enhance the therapeutic efficacy and to prevent the severe side effect in whole body. Thus, we have prepared an injectable chitosan hydrogel containing liposomes to treat cancers clinically. Anionic liposomes incorporated to improve sustained release efficiency within chitosan hydrogel. The chitosan solution containing liposomes was designed to form a hydrogel complex at body temperature. The released behavior of doxorubicin from liposomes in chitosan hydrogel showed sustained-release caused by diffusion of doxorubicin from temperature responsive liposome into chitosan hydrogel. The chitosan hydorgel containing liposomes enhanced the therapeutic potency for the solid tumor in vivo system. Our results indicate that the liposomes in chitosan hydrogel represent a depot system for local drug delivery.

Stabilization of Retinol through Incorporation into Liposomes

  • 이승철;육현균;이동훈;이경은;황용일;Richard D. Ludescher
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.358-363
    • /
    • 2002
  • Chemical and photochemical processes during storage and preparation rapidly degrade retinol, the most active form of vitamin A. therefore, the efficacy of incorporation into liposomes in order to modulate the kinetics of retinol degradation was investigated. Retinol was readily incorporated into multilamellar liposomes that were prepared form soybean phosphatidylcholine; the extent of the incorporation was 98.14±0.93% at pH 9.0 at a ratio of 0.01 : 1 (wt:wt) retinol : phospholipid. It was only marginally lower at higher retinol concentrations. The pH of the hydration buffer had a small effect. The incorporation efficiency ranged from 99.25±0.47% at pH 3 to 97.45±1.13% at pH 11. The time course of the retinol degradation in the aqueous solution in liposomes was compared to that of free retinol and free retinol with α-tocopherol under a variety of conditions of pH(3, 7, and 11), temperature(4, 25, 37, and 50℃), and light exposure(dark, visible, and UV). The retinol that was incorporated into the liposomes degraded significantly slower than the free retinol or retinol with α-tocopherol at pH 7 and 11. At pH 3, where the free retinol degrades rapidly, the degradation kinetics were similar in liposomes and the presence of α-tocopherol. At pH 7.0 and 4℃ in the light, for example, free aqueous retinol was completely degraded within 2 days, while only 20% of the retinol in the liposomes were degraded after 8 days. In general, the protective effect of the liposome incorporation was greater at low temperatures, at neutral and high pH, and in the dark. The results suggest that protection is greater in the solid, gel phase than in the fluid liquid crystalline phase lipids. These results indicate that the incorporation into liposomes can extend the shelf-life of retinol under a variety of conditions of temperature, pH, and ambient light conditions.

Analysis of the Interactive Characteristic of Environmental Toxic Peptide and Phospholipid (환경 독성 Peptide의 인지질과의 상호 작용 특성 분석)

  • 이봉헌;박흥재
    • Journal of Environmental Science International
    • /
    • v.12 no.1
    • /
    • pp.77-80
    • /
    • 2003
  • The interaction of mastoparan B, a cationic tetradecapeptide amide isolated from the hornet Vespa basalis, with phospholipid bilayers was studied with synthetic mastoparan B and its analogue with Ala instead of hydrophobic 12th amino acid residue in mastoparan B. MP-B and its derivative, [12-Ala]MP-B were synthesized by the solid-phase peptide synthesis method. MP-B and its analogue, [12-Ala]MP-B adopted an unordered structure in buffer solution. In the presence of neutral and acidic liposomes, the peptides took an $\alpha$-helical structure. The two peptides interacted with neutral and acidic lipid bilayers. These results indicated that the hydrophobic face in the amphipathic $\alpha$-helix of MP-B critically affected the biological activity and helical content.

Preparation and Emulsifying characteristics of Diethylene glycol succinate Derivative (에틸렌디글리콜과 숙신산 에스테르의 제조와 유화 특성)

  • Lee, Jae-Duk;Jeong, Noh-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.233-239
    • /
    • 2009
  • A reaction device raising a generation yield by efficiently removing water generated in an esterified reaction between diethylene glycol monoethyl ether and succinic acid with mixture of an azeotropic point was newly developed as a new product in development of more stabilized emulsifier with a semi-solid phase(cream) in an emulsified phase of interfacial activity. The bis-(diethylene glycol monoethyl ether succinate(hereinafter, called as BDGS) with a high yield of more than 95% was obtained. As this has a property containing amphoteric emulsified functions such as W/O type or O/W type, etc., and has a merit that can be used regardless of any emulsified phase, there is no need using other emulsified surfactant. therefore, as this has excellent skin wetability in the cosmetics industry, a product having a wider range in quality compatibility or cost saving, etc. as a humectant has been developed.

Preparation and Evaluation of Ketoprofen-incorporated Solid Lipid Nanoparticles (SLN) (케토프로펜을 함유하는 고형 지질 나노파티클의 제조 및 평가)

  • Baek, Myoung-Ki;Lee, Sang-Young;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.4
    • /
    • pp.245-256
    • /
    • 1996
  • Solid lipid nanoparticles (SLN) have been developed as a new drug delivery system. Although many particulate drug carriers, such as microsphere, liposome, niosome, emulsion, etc. have been introduced, they have some disadvantage; low efficiency of incorporation and stability, lack of reproducibility, and so on. Meanwhile, SLN as a new drug delivery system is known to entrap rugs with a high efficiency and a good reproducibility. Moreover, small size SLN can circulate in blood for a prolonged time. Although many preparation methods were introduced, microfluidization method is recommended to be the most useful. This study was attempted to prepare and evaluate ketoprofen-incorporated SLNs (keto-SLN), which were prepared by two methods, ultrasonication and microfluidization. Keto-SLN was evaluated by measurement of particle size and zeta potential, efficacy of entrapment, sedimentation volume, in virto release pattern. The mean particle size was about $0.1\;{\mu}m$, and the size was dependent on the type and the amount of emulsifier. Zeta potential was negative, $-9{\sim}-13mV$ and entrapment efficacy was very high and stability was good for at least 60 days in the respect of particle size and sedimentation volume ratio. Analgesic effect was also determined as well as pharmacokinetic parameters. The former was comparable to that of that of ketoprofen loaded suspension (keto-sus) and the latter revealed that consistent with the delayed release of keto-SLN. $T_{max}$ was longer than keto-sus. Therefore, keto-SLN was favourable dosage forms in the field of drug delivery system such as anti-cancer, analgesics and anti-inflammatory agents.

  • PDF

Structural Design and Characterization of a Channel-forming Peptide

  • Krittanai, Chartchai;Panyim, Sakol
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.460-465
    • /
    • 2004
  • A 16-residue polypeptide model with the sequence acetyl-YALSLAATLLKEAASL-OH was derived by rational de novo peptide design. The designed sequence consists of amino acid residues with high propensity to adopt an alpha helical conformation, and sequential order was arranged to produce an amphipathic surface. The designed sequence was chemically synthesized using a solid-phase method and the polypeptide was purified by reverse-phase liquid chromatography. Molecular mass analysis by electro-spray ionization mass spectroscopy confirmed the correct designed sequence. Structural characterization by circular dichroism spectroscopy demonstrated that the peptide adopts the expected alpha helical conformation in 50% acetonitrile solution. Liposome binding assay using Small Unilamellar Vesicle (SUV) showed a marked release of entrapped glucose by interaction between the lipid membrane and the tested peptide. The channel-forming activity of the peptide was revealed by a planar lipid bilayer experiment. An analysis of the conducting current at various applied potentials suggested that the peptide forms a cationic ion channel with an intrinsic conductance of 188 pS. These results demonstrate that a simple rational de novo design can be successfully employed to create short peptides with desired structures and functions.