Browse > Article
http://dx.doi.org/10.7317/pk.2013.37.1.94

Synthesis of Polymerizable Amphiphiles with Basic Oligopeptides for Gene Delivery Application  

Bae, Seon Joo (Department of Biochemistry, Chungnam National University)
Choi, Hye (Department of Biochemistry, Chungnam National University)
Choi, Joon Sig (Department of Biochemistry, Chungnam National University)
Publication Information
Polymer(Korea) / v.37, no.1, 2013 , pp. 94-99 More about this Journal
Abstract
Polydiacetylene (PDA) is made by photopolymerization of self-assembled diacetylene monomers. If diacetylene monomers are arranged systematically and close enough with distance of atoms, 1,4-addition polymerization will occur by the irradiation of 254 nm ultraviolet rays and then PDA will have alternated ene-yne polymer chains at the main structure. Aqueous solutions of diffused PDA is tinged with blue which shows ${\lambda}_{max}$ 640 nm. Visible color changes from blue to red occurs in response to a variety of environmental perturbations, such as temperature, pH, and ligand-receptor interactions. In this study, we synthesized cationic peptides - PCDA(10,12-pentacosadyinoic acid) liposome using a solid phase peptide synthesis (SPPS) method and prepared liposome solutions at various molar ratios using MPEG-PCDA. When mammalian cells were treated with the liposomes, high transfection efficiency and low toxicity were observed.
Keywords
polydiacetylene; cationic liposome; gene delivery; amino acid; polyethylene glycol;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. W. Lee, C. D. Kang, D. H. Yang, J. S. Lee, J. M. Kim, D. J. Ahn, and S. J. Sim, Adv. Func. Mater., 17, 2038 (2007).   DOI   ScienceOn
2 J. Yoon, S. K. Chae, and J. M. Kim, J. Am. Chem. Soc., 129, 3038 (2007).   DOI   ScienceOn
3 Z. Z. Yuan, C. W. Lee, and S. H. Lee, Angew. Chem. Int. Ed., 43, 4197 (2004).   DOI   ScienceOn
4 R. G. Crystal, Science, 270, 404 (1995).   DOI   ScienceOn
5 T. Fujita, M. Furuhata, Y. Hattori, H. Kawakami, K. Toma, and Y. Maitani, J. Contr. Rel., 129, 124 (2008).   DOI   ScienceOn
6 M. Johnson-Saliba and D. A. Jans, Curr. Drug Targets, 2, 371 (2001).   DOI
7 S. Y. Wong, J. M. Pelet, and D. Putnam, Prog. Polym. Sci., 32, 799 (2007).   DOI   ScienceOn
8 J. S. Choi, E. J. Lee, H. S. Jang, and J. S. Park, J. Biochem. Mol. Biol., 33, 476 (2000).
9 M. Furuhata, H. Kawakami, K. Toma, Y. Hattori, and Y. Maitani, Int. J. Pharm., 316, 109 (2006).   DOI   ScienceOn
10 M. Morille, C. Passirani, A. Vonarbourg, A. Clavreul, and J. P. Benoit, Biomaterials, 29, 3477 (2008).   DOI   ScienceOn
11 R. C. Mulligan, Science, 260, 926 (1993).   DOI
12 D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, Nature Nanotech., 2, 751 (2007).   DOI   ScienceOn
13 S. K. Kwon, S. W. Kim, and Y. J. Kim, Polymer(Korea), 34, 501 (2010).
14 S. K. Kwon, K. H. Jeong, and Y. J. Kim, Polymer(Korea), 33, 213 (2009).
15 J. S. Choi, K. Nam, J. Y. Park, J. K. Lee, and J. S. Park, J. Contr. Rel., 99, 445 (2004).   DOI   ScienceOn
16 G. S. Yu, Y. M. Bae, H. Choi, B. Kong, I. S. Choi, and J. S. Choi, Bioconjug. Chem., 22, 1046 (2011).   DOI   ScienceOn
17 J. M. Kim, J. S. Lee, H. Choi, D. Sohn, and D. J. Ahn, Macromolecules, 38, 9366 (2005).   DOI   ScienceOn
18 D. H. Charych, J. O. Nagy, W. Spevak, and M. D. Bednarski, Science, 261, 585 (1993).   DOI
19 Q. Huo, K. C. Russell, and R. M. Leblanc, Langmuir, 15, 3972 (1999).   DOI   ScienceOn
20 S. Okada, S. Peng, W. Spevak, and D. Charych, Acc. Chem. Res., 31, 229 (1998).   DOI   ScienceOn
21 H. Ringsdorf, B. Schlarb, and J. Venzmer, Ang. Chem. Int. Ed., 27, 113 (1988).   DOI   ScienceOn
22 A. Sarkar, S. Okada, K. Komatsu, H. Nakanishi, and H. Matsuda, Macromolecules, 31, 5624 (1998).   DOI   ScienceOn
23 R. W. Carpick, D. Y. Sasaki, M. S. Marcus, M. A. Eriksson, and A. R. Burns, J. Phys.-Condens. Mat., 16, R679 (2004).   DOI   ScienceOn