• 제목/요약/키워드: $b_{\nu}(s)-metric$

검색결과 3건 처리시간 0.017초

THE REICH TYPE CONTRACTION IN A WEIGHTED bν(α)-METRIC SPACE

  • Pravin Singh;Shivani Singh;Virath Singh
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권4호
    • /
    • pp.1087-1095
    • /
    • 2023
  • In this paper, the concept of a weighted bν(α)-metric space is introduced as a generalization of the bν(s)-metric space and ν-metric space. We prove some fixed point results of the Reich-type contraction in the weighted bν(α)-metric space. Furthermore, we generalize Reich's theorem by extending the result to a weighted bν(α)-metric space.

ON SOME MEASURE RELATED WITH POISSON INTEGRAL ON THE UNIT BALL

  • Yang, Gye Tak;Choi, Ki Seong
    • 충청수학회지
    • /
    • 제22권1호
    • /
    • pp.89-99
    • /
    • 2009
  • Let $\mu$ be a finite positive Borel measure on the unit ball $B{\subset}\mathbb{C}^n$ and $\nu$ be the Euclidean volume measure such that ${\nu}(B)=1$. For the unit sphere $S=\{z:{\mid}z{\mid}=1\}$, $\sigma$ is the rotation-invariant measure on S such that ${\sigma}(S)=1$. Let $\mathcal{P}[f]$ be the invariant Poisson integral of f. We will show that there is a constant M > 0 such that $\int_B{\mid}{\mathcal{P}}[f](z){\mid}^{p}d{\mu}(z){\leq}M\;{\int}_B{\mid}{\mathcal{P}}[f](z)^pd{\nu}(z)$ for all $f{\in}L^p({\sigma})$ if and only if ${\parallel}{\mu}{\parallel_r}\;=\;sup_{z{\in}B}\;\frac{\mu(E(z,r))}{\nu(E(z,r))}\;<\;\infty$.

  • PDF

SOME RESULTS RELATED WITH POISSON-SZEGÖKERNEL AND BEREZIN TRANSFORM

  • Yang, Gye Tak;Choi, Ki Seong
    • 충청수학회지
    • /
    • 제24권3호
    • /
    • pp.417-426
    • /
    • 2011
  • Let ${\mu}$ be a finite positive Borel measure on the unit ball $B{\subset}{\mathbb{C}}^n$ and ${\nu}$ be the Euclidean volume measure such that ${\nu}(B)=1$. For the unit sphere $S=\{z:{\mid}z{\mid}=1\}$, ${\sigma}$ is the rotation-invariant measure on S such that ${\sigma}(S) =1$. Let ${\mathcal{P}}[f]$ be the Poisson-$Szeg{\ddot{o}}$ integral of f and $\tilde{\mu}$ be the Berezin transform of ${\mu}$. In this paper, we show that if there is a constant M > 0 such that ${\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\mu}(z){\leq}M{\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\nu}(z)$ for all $f{\in}L^p(\sigma)$, then ${\parallel}{\tilde{\mu}}{\parallel}_{\infty}{\equiv}{\sup}_{z{\in}B}{\mid}{\tilde{\mu}}(z){\mid}<{\infty}$, and we show that if ${\parallel}{\tilde{\mu}{\parallel}_{\infty}<{\infty}$, then ${\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\mu}(z){\leq}C{\mid}{\mid}{\tilde{\mu}}{\mid}{\mid}_{\infty}{\int_S}{\mid}f(\zeta){\mid}^pd{\sigma}(\zeta)$ for some constant C.